References:
1. Misra, N.K., Wairya, S., and Sen, B. "Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability", Ain Shams Engineering Journal, 9(4), pp. 2027-2037 (2018).
2. Misra, N.K., Sen, B., and Wairya, S. "Novel conservative reversible error control circuits based on molecular QCA", Int. J. Comput. Appl. Technol., 56(1), pp. 1-17 (2017).
3. Rahmani, Y., Heikalabad, S.R., and Mosleh, M. "Design of a new multiplexer structure based on a new fault-tolerant majority gate in quantum-dot cellular automata", Optical and Quantum Electronics, 53(9), pp. 1-19 (2021).
4. Kaity, A. and Singh, S. "Optimized area efficient quantum dot cellular automata based reversible code converter circuits: Design and energy performance estimation", The Journal of Supercomputing, 77(10), pp. 11160-11186 (2021).
5. Afrooz, S. and Navimipour, N.J. "An effective nano design of demultiplexer architecture based on coplanar quantum-dot cellular automata", IET Circuits, Devices & Systems, 15(2), pp. 168-174 (2021).
6. Pathak, N., Misra, N.K., Bhoi, B.K., et al. "Optimization of parameters of adders and barrel shifter based on emerging QCA technology", Radioelectronics and Communications Systems, 64(10), pp. 535-547 (2021).
7. Sherizadeh, R. and Navimipour, N.J. "Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving", Optik, 158, pp. 477-489 (2018).
8. Lantz, T. and Peskin, E. "A QCA implementation of a configurable logic block for an FPGA", IEEE International Conference on Reconfigurable Computing and FPGA's (ReConFig 2006), pp. 1-10 (2006).
9. Kianpour, M. and Sabbaghi-Nadooshan, R. "A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata", Microprocessors and Microsystems, 38(8), pp. 1046- 1062 (2014).
10. Kianpour, M. and Sabbaghi-Nadooshan, R. "A novel modular decoder implementation in quantum-dot cellular automata (QCA)", In 2011 International Conference on Nanoscience, Technology and Societal Implications, pp. 1-5 (2011).
11. Goswami, M., Tanwar, R., Rawat, P., et al. "Configurable memory designs in quantum-dot cellular automata", International Journal of Information Technology, 13(4), pp. 1381-1393 (2021).
12. Banerjee, S., Bhattacharya, J., and Chatterjee, R., et al. "A novel design of 3 input 8 output decoder using quantum dot cellular automata", IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1-6 (2016).
13. Vieira, L.G.L., Vieira, L.F.M., Vieira, M.A.M., et al. "Geometric greedy router in quantum-dot cellular automata", AEU-International Journal of Electronics and Communications, 128, 153498 (2021).
14. Navidi, A., Sabbaghi-Nadooshan, R., and Dousti, M. "TQCAsim: an accurate design and essential simulation tool for ternary logic quantum-dot cellular automata", Scientia Iranica, 29(6), pp. 3249-3256 (2021).
15. Kassa, S., Gupta, P., Kumar, M., et al. "Rotated majority gate-based 2n-bit full adder design in quantumdot cellular automata nanotechnology", Circuit World, 48(1), pp. 48-63 (2021).
16. Yaqoob, S., Ahmed, S., Naz, S.F., et al. "Design of efficient N-bit shift register using optimized D ip op in quantum dot cellular automata technology", IET Quantum Communication, 2(2), pp. 32-41 (2021).
17. Misra, N.K., Sen, B., Wairya, S., et al. "Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA", Journal of Circuits, Systems and Computers, 26(09), 1750145 (2017).
18. Pal, J., Pramanik, A.K., Sharma, J.S., et al. "An efficient, scalable, regular clocking scheme based on quantum dot cellular automata", Analog Integrated Circuits and Signal Processing, 107(3), pp. 659-670 (2021).