Dynamic Error Analysis of Gantry Type Coordinate Measuring Machines

Author

Department of Mechanical Engineering,Sharif University of Technology

Abstract

Coordinate Measuring Machines (CMMs) are designed for precision inspection of complex industrial products. The mechanical accuracy of CMMs depends on both static and dynamic sources of error. In automated CMMs, one of the dynamic error sources is vibration of the probe, due to inertia forces resulting from parts acceleration and deceleration. Modeling of a gantry type CMM, based on the Timoshenko beam theory with moving mass effects, is developed and the dynamic errors of the probe resulting from the acceleration and deceleration of moving parts, are calculated. Findings from analytical solution and dynamic modeling software indicate high accuracy and good agreement between the results.