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Research Note

Dynamic Error Analysis of Gantry

Type Coordinate Measuring Machines

M.T. Ahmadian�, G.R. Vossoughi1 and S. Ramezani1

Coordinate Measuring Machines (CMMs) are designed for precision inspection of complex
industrial products. The mechanical accuracy of CMMs depends on both static and dynamic
sources of error. In automated CMMs, one of the dynamic error sources is vibration of the probe,
due to inertia forces resulting from parts acceleration and deceleration. Modeling of a gantry
type CMM, based on the Timoshenko beam theory with moving mass e�ects, is developed and
the dynamic errors of the probe resulting from the acceleration and deceleration of moving parts,
are calculated. Findings from analytical solution and dynamic modeling software indicate high
accuracy and good agreement between the results.

INTRODUCTION

Coordinate measuring machines are, nowadays, widely
used for a large range of measuring tasks. These tasks
are expected to be carried out with ever increasing
accuracy, speed, 
exibility and ability to operate under
shop 
oor conditions. Research is necessary to meet
these demands. CMMs are prone to many error
sources. Based on functional components of a CMM,
an overview has been given by Weekers [1] of the most
important error sources a�ecting the accuracy of a
CMM:

� Geometric Errors: Limited accuracy in manufactur-
ing, assembling and adjustment of components, like
guide ways and measurement systems;

� Drive System: For CNC operated CMMs, the axes
are equipped with drives, transmission and a servo-
control unit causing errors, such as mechanical load
and structural vibration;

� Measurement System: The actual coordinates of
measuring points are derived from the values in-
dicated by the linear scales of the CMM. The
main errors introduced by scales are inaccuracy of
scale pitch, the misalignment and adjustment of the
reading device and interpolation errors;
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� Errors Due to Mechanical Loads: These are errors
related to static or slowly varying forces on CMM
components, in combination with the compliance of
components, and are mainly caused by the weight
of moving parts;

� Thermally Induced Errors: The di�erence between
the temperature of the measuring scales of CMM
and the work piece and temperature gradient in
machine components are sources of error;

� Dynamic Errors: These are errors mainly caused
by the deceleration of moving parts before stopping.
These errors depend on the CMMs structural prop-
erties, like mass distribution, component sti�ness
and damping characteristics, as well as on the
control system and disturbing forces.

This paper concentrates on the dynamic errors
of CMMs caused by the deceleration of moving parts.
Some studies on the error analysis of CMMs have been
done. Weekers and Schellekenes [2] proposed a method
for compensation of the dynamic errors of CMMs using
inductive position sensors for online measurement of
major dynamic errors. Barakat et al. [3] presented
a kinematical and geometrical error compensation of
CMMs, based on experiment. Nijs et al. [4] presented
a very simple model of CMM for obtaining natural
frequencies of a CMM. Several researchers have applied
software compensation successfully on CMMs [5,6].

Most of these researchers have considered a very
simple model for their analysis, while most of the
studies are based on experiment. In the present
study, a full CMM modeling is analyzed. All columns
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and guide ways are modeled as a Timoshenko beam
with moving mass e�ects [7,8], and 
exibility in all
directions. All bearings are modeled as torsional
springs and torsional deformation of the column and
guide ways are considered, too. Dynamic equations of
motion are derived using Hamilton's principle [9]. The
derived equations are solved using the �nite di�erence
method. The results are compared with those obtained
from the dynamic modeling software (ADAMS-FLEX).
Determination of the natural frequencies of CMM at
various positions of the probe and optimization of the
system using a Genetic Algorithm are presented by
Ramezani [10].

MODELING OF CMM STRUCTURE

Structural components of a gantry type CMM are
shown in Figure 1. Because of the very small de-
formation of each component, the x-, y- and z-axes
are assumed to remain in the same direction as in an
undeformed state. The most important problem in this
modeling is that the motions of the y-guide way, x-
guide way and z-pinole are relative motions. They are
the absolute deformation of each beam, but, they are
not the absolute motion of each beam. So, the strain
energy of each beam is only a function of its defor-
mations, but, the kinetic energy of each component is
in
uenced by the motion of other components. The
system is assumed to be �xed at each position of the
probe. The modeling of each component is presented
in the following sections.

MODELING OF THE RIGHT COLUMN

For the right column, bending, torsional and longitu-
dinal vibration is considered. The kinetic and strain

Figure 1. Schematic view of a gantry type CMM.

energy of the column can be written as:
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where:

A(�; t): bending of column in xz-plane,
�(�; t): rotation of column around y-axis,
B(�; t): bending of column in yz-plane,
�(�; t): rotation of column around x-axis,
�1(�; t): torsion of column around z-axis,
C(�; t): longitudinal vibration in z-direction,
A1, I1x, I1y , I1z , E1, G1, �1, h and k: cross
sectional area, actual and equivalent moments of
inertia, Young's modulus, shear modulus, density,
length of column and shear factor, respectively.

Note that the symbols (_) and (0) denote deriva-
tion, with respect to time and coordinates, respec-
tively.

MODELING OF THE RIGHT Y -GUIDE

WAY

For the right y-guide way, kinetic and strain energy
have been considered to be as follows:
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where:

ys: location of y-carriage on the y-guide way,
D(y; t): bending in xy-plane,

1(y; t): rotation around z-axis,
E(y; t): bending in yz-plane,

2(y; t): rotation around x-axis,
�3(y; t): torsion around y-axis,
A2, I2x, I2z , I2y , E2, G2, �2 and Ly are cross
sectional area, actual and equivalent moments of
inertia, Young's modulus, shear modulus and density
and length of y-guide way, respectively.

MODELING OF THE Y -CARRIAGE AND

BEARING

For the drive system e�ect, only the rotation of the y-
carriage bearing around the y-axis is considered. Note
that this part acts as a moving mass on the y-guide
way. The kinetic and strain energy in this member can
be written as:
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where:

�2(t): torsion around y-axis,
Kbc3, Mbc3, Jbc3y and Jbc3z: torsional sti�ness
of bearing and drive system, mass and mass
moments of inertia of y-carriage and its
bearing, respectively.

MODELING OF THE X-GUIDE WAY

For the x-guide way, bending and torsion is considered.
The kinetic and strain energy can be written as:
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where:

xs: location of y-carriage on the y-guide way,
W (x; t): bending in xz-plane,
W1(x; t): bending in xz-plane,
 (x; t): rotation around y-axis,
V (y; t): bending in xy-plane,
'(x; t): rotation around z-axis,
�(x; t): torsion around x-axis,
A3, I3x, I3y, I3z , E3, G3, �3 and Lx are area,
moments of inertia, Young's modulus, shear modulus,
density and length of x-guide way, respectively.

MODELING OF THE BEARINGS AT

Z-PINOLE

The kinetic and strain energy resulting from the motion
of the z-pinole and torsion of bearings in the z-pinole
assembly is, as follows:
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where:

�4(t): torsion of x-carriage bearing around x-axis,
�5(t): torsion of z-axis bearing around x-axis,
�6(t): torsion of z-axis bearing around y-axis.

The parameters Kbc4, Kbc5, Kbc6, Mbcz, Jbc4x, Jbc5x,
Jbc6y, J4y and J4z are torsional sti�ness of bearings
and drive system, mass and mass moments of inertia of
z-pinole carriage about x-axis, z-bearing and housing
about x-axis, z-bearing about y-axis, z-bearing and z-
axis assembly about y- and z-axis, respectively.

MODELING OF THE Z-PINOLE

Here, the bending of z-pinole in the xz- and yz-planes
is considered. Kinetic and strain energy can be written,
as follows:
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where:

R(z; t): bending in yz-plane,
�1(z; t): rotation around x-axis,
S(z; t): bending in xz-plane,
�2(z; t): rotation around y-axis,
A4, I4x, I4y , I4z , E4, G4, �4 and Lz: cross sectional
area, moments of inertia, Young's modulus, shear
modulus, density and length of z-axis, respectively.

MODELING OF THE LEFT COLUMN AND

Y -GUIDE WAY

For the left-side support column and y-guide way, the
same motions C(�; t), E(y; t) and 
2(y; t) have been
considered in a similar fashion to the right side column
and y-guide way. The kinetic and strain energy can be
written, as follows:
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where A5, A6, I6x, E5, E6, G5, G6, �5 and �6 are cross
sectional area, moments of inertia, Young's modulus,
shear modulus, density of left column and left y-guide
way, respectively.

Note that because of the e�ect of the drive system,
some motions, such as rotation of the x-carriage around
the z-axis, longitudinal vibration of the z-axis and
horizontal and vertical motion of the y-carriage, have
been neglected. Furthermore, the gravitational strain
energy is neglected.

EQUATIONS OF MOTION

Using the Hamilton's principle equations of motion can
be found, as follows:
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and neglecting higher order terms, virtual work done
by the drive system and gravitational e�ects can be
written as:
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following form:
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where the variable N can be E, D, 
1, 
2, V , W , '
and  and the parameter � can be y or x, respectively.
Besides, other terms, resulting from the moving mass
e�ect, will appear in the equations of the y- and x-guide
ways.

Now, the equations of each member can be writ-
ten, as follows.
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=ME(y; t)�(ys); (30)
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)
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(
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"
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"
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@x
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@x@t

#
�(xs)

))
�(ys) = 0; (31)
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#
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#
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"
��4(t)
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�����
x=xs

+ �
2(y; t) + vy
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2(y; t)

@y@t
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@
2(x; t)

@x

#)
�(ys) = 0: (32)

In the above equations, the term � is the Kronecker
delta function and is de�ned in the following form:

�(ys) =

(
1 if y = ys

0 if y 6= ys
(33)

The coe�cients of �(ys) are terms resulting from
moving mass e�ects.

EQUATION CORRESPONDING TO

ROTATION �2

�

"
Jbc3z +M3

L2
x

3
+Mbczx

2
s +M4x

2
s

#"
��2(t)

+

 
�
1(y; t) + vy
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1(y; t)
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@
1(x; t)

@x

!
�(ys)
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�Kbc3�2(t) +

"
��4(t) + ��5(t) + ��(xs; t) +

 
�
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@2
2(y; t)

@y@t
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@
2(x; t)

@x

!�����
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#

+M4xs
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2Lz

+

"
M3
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2
+Mbczxs

+M4xs

#
�A(h; t) + xs(Mbcz +M4)

"
�V (x; t)
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@V (x; t)
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+ vx

@2V (x; t)

@x@t
]�(xs) + ay

"
M3

Lx

2

+Mbczxs +M4
x2s
Lz

#
= 0: (34)

EQUATIONS OF X-GUIDE WAY

M3[ �V (x; t) + �A(h; t)� x��2(t) + ay]

+ kG3A3Lx

"
@'(x; t)

@x
�
@2V (x; t)

@x2

#

+

(
(M4 +Mbcz)

"
�A(h; t) + ay � vx

"
_�2(t)
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@
1(y; t)

@t
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1(y; t)
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!�����
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#
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�
1(y; t) + vy
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1(y; t)

@y@t
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@
1(x; t)
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!�����
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+ ��2(t)

#
+M4
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"
��4(t) + ��5(t)
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@2
2(y; t)
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@
2(x; t)
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!
�(ys)]

)
�(xs) = 0; (35)

�3I3z �'(x; t)�E3I3z'
00(x; t) + kG3A3

"
'(x; t)

�
@V (x; t)

@x

#
+ J4z'(x; t)�(xs) = 0; (36)
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"
�W (x; t)� �C(h; t) + x��3(ys; t) + �E(ys; t)

+ ys ��(h; t) + ay
@E(y; t)

@y

�����
ys

+ vy
@2E(y; t)

@y@t

�����
ys

#

+ LxkG3A3

"
@ (x; t)

@x
�
@2W (x; t)

@x2

#

+
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vy _�1(h; t) + ys��1(h; t) + �B(h; t) + ax

+ �D(ys; t) + ay
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�����
ys

+ vy
@2D(y; t)

@y@t

�����
ys

+ vy _�(h; t) + ys��(h; t)� �C(h; t) + �E(ys; t)

+ ay
@E(y; t)

@y

�����
ys

+ vy
@2E(y; t)

@y@t

�����
ys

+W (x; t)

+ vx( _�3(ys; t) + _�(h; t)) + ��(h; t)

+ xs(��3(ys; t))(Mbcz +M4)] +M4l

"
��4(t)

+ ��5(t) + ��(xs; t) + �
2(ys; t) + ay
@
2(y; t)

@y

�����
ys

+ vy
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2(y; t)

@y@t

�����
ys

)
�(xs)

= (Mbcz +M4)W (x; t)�(xs)g; (37)

�3I3y � (x; t)�E3I3y 
00(x; t) + kG3A3

"
 (x; t)

�
@W (x; t)

@x

#
+ (Jbc6y + J4y) (x; t)�(xs) = 0;

(38)

�3��(x; t)+G3�
00(x; t)+
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��4(t)+��(xs; t)+�
2(ys; t)
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@
2(y; t)
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�����
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@y@t

�����
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#
(Jbc4x+Jbc5x
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+ l2M4) + (Jbc5x + l2M4)��5(t)

)
�(xs) = 0: (39)

Again the coe�cients of �(xs) are terms resulting from
moving mass e�ects.

EQUATIONS CORRESPONDING TO THE

ROTATIONS �4, �5 AND �6

"
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EQUATIONS IN Z-PINOLE
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+ �V (xs; t)

)
+kG4A4

"
@�1(z; t)

@z
�
@2R(z; t)

@z2

#
=0;
(43)
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+ ys��1(h; t) + ay
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�����
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+ �D(ys; t)] + kG4A4
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�
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�4I4y��2(z; t)�E4I4y�
00

2 (z; t)

+ kG4A4

"
�2(z; t)�

@S(z; t)

@z

#
= 0:

(45)

BOUNDARY CONDITIONS

Columns are assumed to be clamped at � = 0. At
� = h, the boundary conditions are determined from
Hamilton's principle. The y-guide way is clamped
at y = 0 and free at y = Ly. The x-guide way
is clamped-free in the xy-plane and simply supported
in the xz-plane. The z-pinole is clamped free, too.
Here, for brevity, representation of the equations of
the boundary conditions are neglected, but, they can
be easily obtained from Hamilton's principle. Further-
more, most of them are the well known \simple" bound-
ary conditions. As an example, boundary conditions
corresponding to the right y-guide way are, as follows:

8>>>><
>>>>:
D(0; t) = 
1(0; t) =

@
1(y;t)
@y

�����
y=Ly

= 0

@D(y;t)
@y

�����
y=Ly

� 
1(Ly; t) = 0

;

8>>>><
>>>>:
E(0; t) = 
2(0; t) =

@
2(y;t)
@y

�����
y=Ly

= 0

@E(y;t)
@y

�����
y=Ly

� 
2(Ly; t) = 0

;

�3(0; t) =
@�3(y; t)

@y

�����
y=Ly

= 0: (46)

METHOD OF SOLUTION

An explicit time integration method [11] is used for
solving the equations of motion. This method of

solution is conditionally stable and should be used with
a small time step size. A central di�erence equation is
used for position di�erentiation and forward di�erence
is used for time di�erentiation. For every function, it
can be written that:

@2N

@�2

���n�t

m��
=

N

���n�t

(m+1)��
� 2N

���n�t

m��
+N

���n�t

(m�1)��

(��)2
;

(47)

@N

@t

���n�t

m��
=
N

���(n+1)�t

m��
�N

���n�t

m��

(�t)2
; (48)

where �� is the step size in position, �t is the time
step, n is counter of time and m is the node number.
The input of the system is the pro�le of acceleration of
moving parts versus time. De�ning the time derivative
of each variable as a new variable, the second order
derivatives, with respect to the time, will be presented
into the �rst order derivative form and the descritized
equations will be presented in two times n�t and (n+
1)�t. The �nal equation is in the following form:

[A](n)fV g(n+1) = [B](n)fV g(n) + fCg(n); (49)

where the matrices [A](n) and [B](n) are known coef-
�cient matrices at time n�t, the vector fV g(n+1) is a
vector containing all variables in all nodes, except at
the �rst node, at time (n+1)�t. The vector fCg(n), is
a known vector resulting from the acceleration of the
moving parts. Note that because of the motion of x-
and y-guide ways, each matrix should be constructed at
each time step. Solving for velocities, one may obtain
the corresponding displacements.

In order to illustrate an example of modeling, a
CMM with the following speci�cations is modeled.

�i=7850 kg/m
3
; Ei=200 Gpa; Gi=70 Gpa;

h=0:8 m; Ly=0:6 m; Lx=1:2 m;
Lz = 0:75 m; l = 0:16 m;
z0=0:125 m; Kbearings=5e7 N.m/rad;
A1=7:6e�3 m2; A2=4:6e�3 m2;

A3=7:6e�3 m2; A4=1:0e�3 m2;

A5=4:6e�3 m2; A6=4:6e�3m2;

I1x=7:86e�5 m4; I1y=1:3e�5 m4;

I1z=3:58e�5 m4; I2x=1:35e�5 m4;

I2y=1:38e�6 m4; I2z=2:04e�5 m4;

I3x=5:94e�5 m4; I3y=2:82e�5 m4;

I3z=6:35e�5 m4; I4x=4:21e�7 m4;

I4y=4:21e�7 m4; I5x=1:35e�5 m4;

I5z=2:04e�5 m4; I6x=1:35e�5 m4;

I6y=2:04e�5 m4; Jbc3z=0:18 kgm4;

Jbc3z=0:3 kgm4; Jbc4x=2:7 kgm4;

Jbc5x=0:05 kgm4; Jbc6y=0:05 kgm4;

J4y=3:4 kgm4; J4z=1:3 kgm4;

Mbc3=10 kg; Mbcz=35 kg:
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In Figure 2, the pro�le of accelerations ax and ay is
shown for two motions. In motion 1, the accelerations
and decelerations are applied rapidly (in the step func-
tion form) and, in the second motion, the accelerations
are applied in the semi-sinusoidal form. The maximum
value of the accelerations is assumed to be 1.5 m/s2

and maximum velocities are 0.6 m/s. Note that, in
both cases, the systems start from rest and the course of
traveling is 120 cm and 60 cm in the x-and y-directions,
respectively.

The values of error for step time acceleration and
deceleration in the x-, y- and z-directions are shown
in Figures 3 to 5. The absolute value of error for this
type of excitation is shown in Figure 6. It can be seen
that the main part of the error is produced in the y-

Figure 2. Acceleration and deceleration pro�les for two
motions (step and sinusoidal pro�les).

Figure 3. Dynamic error of probe in x-direction for step
type acceleration and deceleration.

Figure 4. Dynamic error of probe in y-direction for step
type acceleration and deceleration.

Figure 5. Dynamic error of probe in z-direction for step
type acceleration and deceleration.

Figure 6. Magnitude of dynamic error of probe for step
type acceleration and deceleration.
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direction, since the total sti�ness of the structure is
small in this direction in comparison with the other
two directions. Similarly, the values of error for the
semi-sinusoidal acceleration and deceleration in the
di�erent directions are shown in Figures 7 to 9. The
absolute value of error for this type of excitation is
shown in Figure 10. Again, the main part of the error
can be seen in the y-direction. The results indicate
good agreement with those obtained from the dynamic
modeling software ADAMS-FLEX. Furthermore, it is
clear that, in order to decrease the oscillations of the
probe, a smooth pro�le (such as a semi-sinusoidal one)
of acceleration should be applied on the CMM.

CONCLUSION

The modeling of a gantry type CMM, based on the
Timoshenko beam theory, subjected to moving mass
was developed and the dynamic errors of the probe

Figure 7. Dynamic error of probe in x-direction for
semi-sinusoidal acceleration and deceleration.

Figure 8. Dynamic error of probe in y-direction for
semi-sinusoidal acceleration and deceleration.

Figure 9. Dynamic error of probe in z-direction for
semi-sinusoidal acceleration and deceleration.

Figure 10. Magnitude of dynamic error of probe for
semi-sinusoidal acceleration and deceleration.

have been calculated. The equations of motion and
boundary conditions have been obtained using Hamil-
ton's principle.

Results indicate that, in order to decrease the
oscillatory motion of the probe, a smooth function
of the acceleration or deceleration function should be
applied on the CMM. The maximum value of the
dynamic error in the step type excitation is larger than
the value obtained from semi-sinusoidal excitation. So,
a smooth function of excitation enforces a smaller value
of absolute error to the machine.

In both step and semi-sinusoidal types of excita-
tion applied to the machine, the main part of the error
is produced in the y-direction. The value of error in
this direction is approximately three times the error
induced in the x- and z-directions. This fact indicates
that the total sti�ness of the system in the y-direction
is small, in comparison with the other two directions.
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The results of the authors' analytical modeling indicate
good agreement and high accuracy in comparison with
the results found by dynamic modeling software.
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