Inviscid Compressible Flow Computations on 3D Unstructured Grids


Department of Mechanical Engineering,Sharif University of Technology


In this paper, an explicit finite element based numerical procedure is presented for simulating three-dimensional inviscid compressible flow problems. The implementation of the first-order upwind method and a higher-order artificial dissipation technique on unstructured grids, using tetrahedral elements, is described. Both schemes use a multi-stage Runge-Kutta time-stepping method for time integration. The use of an edge-based data structure in the finite element formulation and its computational merits are also elaborated. Furthermore, the performance of the two schemes in solving a benchmark problem involving transonic flow about an ONERA M6 wing is compared and detailed solutions are presented.