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In this paper� an explicit �nite element based numerical procedure is presented for simulating

three�dimensional inviscid compressible �ow problems� The implementation of the �rst�order

upwind method and a higher�order arti�cial dissipation technique on unstructured grids� using

tetrahedral elements� is described� Both schemes use a multi�stage Runge�Kutta time�stepping

method for time integration� The use of an edge�based data structure in the �nite element

formulation and its computational merits are also elaborated� Furthermore� the performance of

the two schemes in solving a benchmark problem involving transonic �ow about an ONERA M�

wing is compared and detailed solutions are presented�

INTRODUCTION

The simulation of inviscid compressible �ow over re�
alistic aerodynamic con�gurations is a fundamental
problem in aircraft industries� Despite many advance�
ments in this �eld� there is still need for more research
to achieve more e�cient methodologies in terms of
generality� accuracy and speed�

Due to the fact that many practical �ow problems
are geometrically complex and possess a wide range of
length scales� the development of a robust and general�
ized solution methodology requires a strong ability to
deal with such features� The �rst e�orts in CFD relied
on structured Cartesian methods� The non�adapted
Cartesian grids with stair�cased geometry� however�
could not represent the boundaries of the �ow domain
properly� In the past three decades� the generalization
of the structured grid strategy to curvilinear coordi�
nates and the use of multi�block grids made two major
impacts on this �eld� but� the challenge of automatic
mesh generation remained an unsolved problem �	
�
In the past decades� an alternative Unstructured
Grid �UG� method was developed� in which element
�cell� connectivities were stored explicitly ���
� The
UG approach is often employed to accomplish mesh
generation and adaptation almost automatically and
to resolve the governing partial di�erential equation
without requiring an excessive number of mesh points�
Naturally� this new strategy required modi�ed equation

�� Department of Mechanical Engineering� Sharif Univer�

sity of Technology� Tehran� Iran�

solvers in order to overcome the complexity introduced
in the data structure� due to having more �exibility
in the geometry modeling� In recent years� several
CFD practitioners developed e�cient and accurate �ow
solvers� based on the UGs ���
� Many UG �ow solvers
are based on the �nite volume method� It is known�
however� that the Finite Element Method �FEM� can
provide other useful features� such as the use of higher�
order elements and a better coupling of the governing
equations�

A noticeable improvement in the computational
e�ciency of the FEM was made by Peraire et al� ��
�
following the ideas introduced by Barth ��
� They used
an edge�based data structure instead of the standard
element�based data structure used in the traditional
FEM approach� It has been shown that the use
of this data structure in �D simulations results in
signi�cantly lower CPU time and smaller memory
allocations� The edge�based FEM approach works
with edges �or sides� instead of elements� Here� an
edge is referred to a line connecting two nodes of
an element� The new approach keeps the original
FEM formulation intact but re�arranges the discretized
equations such that instead of an assembly of element
matrices� one is required to assemble the edge contri�
butions� In this way� the computational loops over
elements in a standard FEM program are replaced
by the loops over edges present in the mesh� This
change does not alter the computational properties
of the FEM method� It does� however� introduce
great �exibility in the method to incorporate many
available numerically e�cient methods ����
� It should
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be mentioned that using an edge�based formulation
becomes troublesome when higher�order elements are
to be used� Another important feature of the edge�
based strategy is its suitability for parallel comput�
ing ��
� In fact� the edge�based formulations were
originally developed to provide better properties for
parallel processing�

This paper presents an unstructured grid FEM
algorithm for solving �D inviscid compressible �ows�
The algorithm is based on an edge�based form of the
so�called standard Galerkin formulation� In order to
achieve practical formulations suitable for solving real�
istic �ows involving discontinuities such as shocks� the
method is stabilized in two di�erent ways� First� the
�rst�order accurate upwind method of Roe �	�
 is used
in connection with a three�stage Runge�Kutta time
marching method� Second� an arti�cial dissipation
method� originally developed by Jameson� Schmidt
and Turkel �		
� is employed to provide a higher�order
method� This method also uses a multi�stage Runge�
Kutta time�stepping algorithm�

Below� after introducing the governing equations
for a �D compressible inviscid �ow� the general FEM
formulation is described and the features of the edge�
based data structure are explained� Then� the details
of implementation of both the Roe�s �rst�order upwind
and the Jameson�Schmidt�Turkel �JST� methods in
an edge�based FEM context are given� A criterion
is given for the choice of time�step size to achieve
stable solutions� Finally� the performance of these
methods is compared by solving a transonic �ow over
an ONERAM� wing and the results are compared with
experimental data� The e�ect of mesh resolution is
also studied and the convergence history for the JST
method is provided�

GOVERNING EQUATIONS

The system of governing equations describing inviscid
compressible �ow comprises the equations of mass�
momentum and energy� The complete system of
governing equations is written in the non�dimensional
conservative form�

�U

�t
�
�Fj

�xj
� �� �	�

where the unknown vector� U� and the inviscid �ux�
Fj � are given by�
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for j � 	� � �� Here� the dimensionless form employed
is based upon the density and velocity of the free�
stream and a characteristic length of the problem� In
the above equations� t denotes time� xj the coordinate
relative to a Cartesian coordinate system� ox�x�x�� uj
the velocity in direction xj � � density� p the pressure
and �ij the Kronecker delta� The total energy per unit
mass is de�ned as E � e�uiui�� where e is the speci�c
internal energy� The �uid is assumed to be an ideal
gas with constant speci�c heat ratio� �� obeying the
equation of state�

p � ��� � 	�T��� ���

where T is the temperature�
Let one consider a spatial domain� �� which is

bounded by a closed surface� �� with unit outward
normal vector� u � �n�� n�� n��� To complete the
description of the problem governed by Equation 	�
the prescription of an initial condition and appropriate
boundary conditions are required� For the initial
condition� it will be assumed that free�stream values
are imposed everywhere in � at some time� t � t��
At a wall boundary� the slip condition is imposed�
This means that the normal component of the velocity
vector is cancelled for the nodes on the wall� Far�
�eld boundary conditions are applied using a linearized
characteristic analysis in the direction normal to the
boundary to correct the computed nodal values ob�
tained at the far��eld�

SOLUTION ALGORITHM

A weak variational formulation of the problem is
adopted as the starting point for the development of
an approximate solution procedure� This weak form
can be written as�Z

�
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for all suitable weighting functions� W � and for all
t � t�� In this expression� an overbar represents
a prescribed boundary �ux� Then� the region � is
discretized into an unstructured assembly of tetra�
hedral elements� with the nodes numbered from 	
to p and the standard linear �nite element shape
function� NJ � associated with node J � is employed
�U�p� �

P
J

UJ�t�NJ �x��� Due to the compact support

of the shape function� NJ � the Galerkin �nite element
approximation of the problem can be written as�X
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The left hand side of this equation can be evaluated
exactly to give�
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where �E is the volume of element E which has nodes
I� J�K and L as shown in Figure 	� and �B is the
area of the boundary face associated to nodes I� J and
K� Also�M denotes the �nite element consistent mass
matrix� which� for the steady �ow analysis of interest
here� is replaced by the lumped �diagonal� mass matrix�
ML� For the integrals of the inviscid �ux� the following
form is used�
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As mentioned before� the integrals appearing in the
Galerkin statement can be evaluated using an edge�
based data structure� Figure 	 depicts a typical four�
node tetrahedral element� along with its nodes� and a
typical edge� The resulting semi�discretized equation�

Figure �� A typical ��node tetrahedral element and edge�

at node I of the mesh� is ��
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where the summations extend over the mI edges� and
the lI boundary faces are connected to node I � The
term h� � � i is only non�zero if node I is on the boundary�
Cj
IIS

and Df are the weight functions associated with

edge IIS and face f � respectively� The weights Cj
IIS

and Df are computed as�
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Here� nj is the component in the xj direction of the
unit normal to the boundary face� f �

The inviscid �ux contribution can be rewritten as�
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The formulation given in Equation � represents a
central di�erence type of approximation and is prone
to produce spurious numerical oscillations and�or nu�
merical instabilities when solving convection dominant
�ow problems� In order to produce a practical scheme�
a consistent numerical �ux is substituted for the actual
inviscid �ux� Two alternatives are considered in this
work and are described below�

ROE�S FIRST�ORDER UPWIND METHOD

This is a popular scheme due to Roe �	�
 and is
widely used in both incompressible and compressible
�ow solvers� Although only a �rst�order form of the
method is used here� various higher�order formulations
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are also available based on this scheme� The main
reason for using Roe�s method in this work is that it is a
highly robust and� computationally� fairly inexpensive
technique� Therefore� its performance is used for
comparison purposes to assess the performance of the
higher�order accurate �JST� method�

Roe�s �rst�order upwind �ux�di�erence splitting
method can be implemented by replacing the actual
�ux� FIIS � by a consistent numerical �ux� FIIS � as�

FIIS �
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where the Jacobian matrix� AIIS � is de�ned by�
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�
�F

�U

�
IIS

� �	��

and is evaluated in the direction of weight coe�cient
vector� CIIS � using Roe�s averaging procedure �	�
� For
the Euler system in �D� the Jacobian matrix along any
arbitrary direction �n�� n�� n�� can be diagonalized as
jAj � R��j�jR� where � � diag�
�� 
�� 
�� 

� 
��� in
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the eigen�values of the system� Here� V � n�u��n�u��
n�u�� uj being the velocity component in direction xj �
and c is the local speed of sound� The dissipation term
can be e�ciently computed as �	
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where �V � n��u� � n��u� � n��u� and the total
enthalpy is h � E � p��� The Roe average quantities
�denoted by �� are de�ned as�

�

� �
p
�L��R�

�

u� �
	
u�L � u�R�

p
�R��L



�
	
	 �

p
�R��L



�

�

u� �
	
u�L � u�R�

p
�R��L



�
	
	 �

p
�R��L



�

�

u� �
	
u�L � u�R�

p
�R��L



�
	
	 �

p
�R��L



�

�

h �
	
hL � hR�

p
�R��L



�
	
	 �

p
�R��L



�

�

c
�
� �� � 	�

�
�

h � �u�� � u�� � u����

�
� �	��

Here� R and L represent the state variables to the right
and left of the interface between the two nodes I and
IS � To construct a time marching method� a three�
stage time stepping Runge�Kutta scheme is employed�
This leads to�
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where Un
I denotes the solution at node I at time t �

tn��t � tn�� � tn and RI is the right hand side of
Equation �� The values �� � ���� �� � ��� and �� � 	
are adopted for the Runge�Kutta coe�cients �	�
� A
local time stepping approach is used to accelerate the
convergence rate towards the steady�state�

It should be added that various techniques for
implementation of higher�order upwind methods in the
context of unstructured grids exist ����
� Most of these
techniques construct a compact stencil to approximate
the interface values to be used for higher�order inviscid
�ux computations�

JST ARTIFICIAL DISSIPATION METHOD

As a second scheme� the arti�cial dissipation scheme�
due to Jameson et al�� is used �		
� The �ux function
associated with this method consists of a blend of
stabilization and discontinuity capturing operators�
with a pressure sensor controlling the magnitude of the
discontinuity capturing term� The solution is advanced
by an explicit three�stage Runge�Kutta scheme� In the
present context� the di�usion� DI � added at a general
node� I � is constructed as a blend of approximations to
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second order and fourth order operators as�
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where the second order operator is approximated ac�
cording to�
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 is the maximum eigen�value of the Jacobian
matrix� lj�F

j��U� in absolute value� where I �
�l�� l�� l�� is the unit vector in the direction of the edge�
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is the nodal value of a pressure switch� A three stage
Runge�Kutta procedure is again employed to advance
the solution from time level t � tn to time level t �
tn�� � tn ��t� Within each time step� this scheme is
implemented in the form�
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Here�Rk��
I represents the right hand side of Equation �

computed at the stage k�	� while the added di�usion�
DI � is held constant at the value computed at tn� The
values of �k are the same as given previously�

An alternative form of adding arti�cial dissipation
is the matrix dissipation technique� Swanson and
Turkel �	�
 have shown that this form can improve the
accuracy of the solution at the expense of higher CPU
time�

TIME STEP SIZE

As mentioned before� in this work� a local time stepping
technique is used� The local time stepping accelerates
convergence by advancing the solution at each element

in time at a CFL number near the local stability limit�
The expression for the local time step is derived with
the aid of a D stability analysis �	�
 and is given as�

��t�I � CFL�ML
I

�
mX
S	�

	IIS j
IIS j
���

� ���

where 
IIS is the maximum eigen�value of the sys�
tem and CFL denotes the Courant number� which is
constant in the domain� A typical value� CFL � �
was used for the calculations presented in this paper�
Finally� it should be noted that the use of a local
time stepping technique is allowed only because the
correct modeling of the transient development of the
�ow was not of interest here and for the steady�state
computations this technique is accurate�

NUMERICAL RESULTS

To demonstrate the performance of the solution al�
gorithms described above� the transonic inviscid �ow
over an ONERA M� wing is solved� This is a well
established benchmark problem and extensive exper�
imental �	�
 and numerical �	�	�
 data exist for it�
For the test case studied here� the Reynolds number
is Re � 		��E��� the Mach number M � ������ and
the angle of incidence � � ����� Since this is a high
Reynolds number �ow problem� it is frequently used
for the assessment of inviscid �ow solvers� The �ow
exhibits interesting �D �ow features� including a 
�
shape shock�shock interaction�

The geometry of the problem involves an
ONERA�M� wing and a symmetry plane� In Figure �
a typical surface grid generated for this geometry is
shown� The wing span is b � 	�	�� and its mean
aerodynamic cord is c � ������ It should be noted here

Figure �� Wing and symmetry plane surface grid�
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that all lengths are non�dimensional� In order to study
the e�ect of surface mesh resolution� two surface grids
shown in Figure � are used� The coarse grid has ����
triangular surface elements� ������ tetrahedral volume
elements and ����� nodal points� The �ne grid has
��� triangular surface elements� ������ tetrahedral
volume elements and �	��� nodal points�

Figure � shows two views of the surface pressure
contour plots obtained using the JST method� It
is seen that a 
�shape shock is captured� Figure �
shows pressure contour plots at various wing sections�
y�b � ��� ����� ��� and ���� Figure � shows the con�
vergence history of the solution for the �rst ��� time Figure �� Wing surface grids �left� coarse� right� �ne	�

Figure �� Surface pressure contour plots obtained by JST�

Figure �� Pressure contour plots obtained using JST method at di
erent wing sections�



Inviscid Compressible Flow Computations 	�

Figure �� Convergence history of JST �thin line	 and
�rst�order upwind �thick line	 methods�

steps of the computations� starting from a free�stream
condition� Each time step of the calculations takes
about six seconds on a Pentium III ��� processor� This
is typical convergence behavior for the JST method and
can be improved using multi�grid techniques� It should
be mentioned that the solution procedure was allowed
to continue up to 	���� time steps but no change in
the results was observed�

In Figure �� the pressure coe�cients obtained by
the JST method are compared with the experimental
data� It is seen that the results are in fairly close
agreement with the data in most sections� A better
shock representation can be achieved by a local mesh
re�nement� which is outside the scope of this paper�

The problem was also solved using Roe�s �rst�
order upwind method and the pressure coe�cients are

Figure �� Comparison of calculated pressure coe�cient distribution at di
erent wing sections with experimental data�
��� JST� �� Experiment	�
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Figure 	� Comparison of calculated pressure coe�cient distribution at di
erent wing sections using di
erent methods�
��� JST� �� First�order upwind	�

compared with those of the JST method in Figure ��
As expected from a �rst�order scheme� the results
are much more di�use than the higher�order accurate
JST method and most of the shock�shock interaction
features of the problem are lost� The solution� however�
is obtained much faster with only two seconds taken
for each time�step� A valuable use of the �rst�order
method can be during the start�up of the solution from
the free�stream condition� where most of the higher�
order methods encounter di�culties and require ad hoc
treatments� For a comparison reason� the convergence
history of the solution� using Roe�s �rst order upwind
method� is also shown in Figure �� The curve shows
that the solution has converged almost to machine zero
within ��� iterations�

Finally� to assess the mesh dependence of the
solution� the problem was solved using the coarse
mesh shown in Figure �� A comparison of the results
obtained on two meshes using the JST is shown in
Figure �� Again� it is seen that the improvement in
the solution is restricted to the regions of high pressure
gradients�

CONCLUSIONS

It has been demonstrated that both the �rst�order
upwind and JST methods can be successfully incorpo�
rated in a �nite element formulation for the simulation
of compressible inviscid �ows� While the JST method
produces highly accurate results� both in the smooth
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Figure 
� Comparison of calculated pressure coe�cient distribution at di
erent wing sections for di
erent meshes using
JST ��� �ne� �� coarse	�

and discontinuous �ow regions for the problem studied
here� the �rst�order upwind method� as expected�
produces a more di�use solution� It is proposed
that the latter may be used as a start�up scheme for
a higher�order scheme� in order to avoid numerical
di�culties encountered when solving highly complex
�ow problems� Finally� it was shown that the JST
method is only sensitive to mesh resolution wherever
signi�cant gradients are involved� In such cases� the
lack of enough mesh resolution results in a smeared
solution�
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