References:
1.Guo, K., Lu, J., Liu, C., et al. “Development, research, optimization and experiment of exoskeleton robot forhand rehabilitation training”, Appl. Sci., 12(20), p.10580 (2022). https://doi.org/10.3390/app122010580.
2.Sung, Y., Lee, D., and Lee, J. “Descriptive study onrehabilitation treatment and evaluation methods forimproving upper limb function in stroke patients”,International Journal of Advanced Nursing Educationand Research, 12(19), p. 39 (2020). http://dx.doi.org/10.21742/ijaner.2020.5.2.03.
3.Bharati, B., Sahu, S., and Pati, S. “Rehabilitation ofstroke patients in India: An exploratory study from anational-level survey data”, Indian J. Physiother. Occup. Ther., 15(3), p. 22 (2021). https://doi.org/10.37506/ijpot.v15i3.16457.
4.Hernandez, M., Lopez, B., Sanchez, A., et al. “Effects ofspecific virtual reality-based therapy for therehabilitation of the upper limb motor function post-ictus: randomized controlled trial”, Brain Sci., 11, 555(2021). https://doi.org/10.3390/brainsci11050555.
5.Rieger, C., and Desai, J. “A preliminary study to designand evaluate pneumatically controlled soft roboticactuators for a repetitive hand rehabilitation task”,Biomimetics, 7(4), p. 139 (2022). https://doi.org/10.3390/biomimetics7040139.
6.Bouteraa, Y., Ben-Abdallah, I., and Boukthir, K. “A newwrist-forearm rehabilitation protocol integrating humanbiomechanics and SVM-Based machine learning formuscle fatigue estimation”, Bioengineering, 10(2), p.219 (2023). https://doi.org/10.3390/bioengineering10020219.
7.Cisnal, A., Cagigal, V., Liraje, G., et al. “An overview of M3Rob, a robotic platform for neuromotor andcognitive rehabilitation using augmented reality”, XLCongreso Anual de la Sociedad Española de IngenieríaBiomédica, pp. 180-183 (2022).
8.Mandeljc, A., Rajhard, A., Munih, M., et al. “Roboticdevice for out-of-clinic post-stroke hand rehabilitation”,Appl. Sci., 12(3), p. 1092 (2022). https://doi.org/10.3390/app12031092.
9.Shalal, S. and Aboud, S. “Smart robotic exoskeleton: a3-DOF for wrist-forearm rehabilitation”, J. Robot.Control, 2(6), pp. 476–483 (2021). https://doi.org/10.18196/jrc.26125.
10.Bauer, O., Vizi, B., Galambos, P., et al. “Direct drivehand exoskeleton for robot-assisted post strokerehabilitation”, Acta Polytech. Hungarica, 18(5), pp.37–54 (2021).
11.Ahmed, T., Zaman, U., Islam R., et al. “Flexohand: Ahybrid exoskeleton-based novel hand rehabilitationdevice”, Micromachines, 12(11), p. 1274 (2021). https://doi.org/10.3390/mi12111274.
12.Kutuk, E., Dulger, C. and Das, T. “Design of a robot-assisted exoskeleton for passive wrist and forearmrehabilitation”, Mechanical Sciences, 10(1), pp. 107–118 (2019). https://doi.org/10.5194/ms-10-107-2019.
13.Lin, H., Su, Y., Lai, H., et al. “A spatial-motion assist-as-needed controller for the passive, active, and resistive robot-aided rehabilitation of the wrist”, IEEE Access, 8, pp. 133951–133960 (2020). https://doi.org/10.1109/ACCESS.2020.3010564.
14.Sandison, M., Phan, K., Casas, R., et al. “Hand mate:wearable robotic hand exoskeleton and integratedandroid app for at home stroke rehabilitation”, 202042nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE,pp. 4867–4872 (2020). https://doi.org/10.1109/embc44109.2020.9175332.
15.Amin, H., Assal, M., and Iwata, H. “A new handrehabilitation system based on the cable-drivenmechanism and dielectric elastomer actuator”,Mechanical Sciences, 11(2), pp. 357–369 (2020). http://dx.doi.org/10.5194/ms-11-357-2020.
16.Marconi, D., Baldoni, A., McKiney, Z., et al. “A novelhand exoskeleton with series elastic actuation formodulated torque transfer”, Mechatronics, 61, pp. 69–82 (2019). https://doi.org/10.1016/j.mechatronics.2019.06.001.
17.Norouzi, M., Karimpour, M., and Mahjoob, M. “Afinger rehabilitation exoskeleton: Design, control, andperformance evaluation”, 2021 9th RSI Int. Conf. Robot.Mechatronics, IEEE, pp. 301–308 (2021). https://doi.org/10.1109/ICRoM54204.2021.9663525.
18.Bohme, M., Kohler, P., Thiel R., et al. “Preliminarybiomechanical evaluation of a novel exoskeleton roboticsystem to assist stair climbing”, Appl. Sci., 12(17), p.8835 (2022). https://doi.org/10.3390/app12178835.
19.kim, H., Ji, M., Kim, Y., et al. “Therapeutic effects of anewly developed 3D magnetic finger rehabilitationdevice in subacute stroke patients: A pilot study”, BrainSci., 12(1), p. 113 (2022). https://doi.org/10.3390/app12178835.
20.Zhu, X. and He, B. “Underactuated rehabilitationrobotics for hand function”, J. Robot. Control, 2(5), pp.337–341 (2021). https://doi.org/10.18196/jrc.25103.
21.Shahdad, I., Azlan, Z., and Jazlan, A. “Modelling a 1-DOF finger extensor machine for hand rehabilitation”,IIUMEng. J., 22(2), pp. 384–396 (2021). https://doi.org/10.31436/iiumej.v22i2.1706.
22.Kladovasilakis, N., Kostavelis, I., Sideridis, P., et al. “A novel soft robotic exoskeleton system for handrehabilitation and assistance purposes”, Appl. Sci.,13(1), p. 553 (2022). https://doi.org/10.3390/app13010553.
23.Kim J., Lee G., Jo H., et al. “A wearable soft robot forstroke patients’ finger occupational therapy andquantitative measures on the joint paralysis”,International Journal of Precision Engineering andManufacturing, 21, pp. 1–8 (2020).
24.Ying, Z., Al-Shammari, K., Faudzi, A., et al.“Continuous progressive actuator robot for handrehabilitation”, Engineering, Technology and AppliedScience Research, 10(1), pp. 5276–5280 (2020). https://doi.org/10.48084/etasr.3212.
25.Gerez, L., Gao, G., Dwivedi, A., et al. “A hybrid,wearable exoskeleton glove equipped with variablestiffness joints, abduction capabilities, and a telescopicthumb”, IEEE Access, 8, pp. 173345–173358 (2020). https://doi.org/10.1109/ACCESS.2020.3025273.
26.Tohanmean, N., Tucan, P., Vanta, M., et al. “Theefficacity of the neuroAssist robotic system for motorrehabilitation of the upper limb promising results froma pilot study”, J. Clin. Med., 12(2), p. 425 (2023).https://doi.org/10.3390/jcm12020425.
27.Jiao, R., Liu, W., Rashad, R., et al. “A novel roboticsystem enabling multiple bilateral upper limbrehabilitation training via an admittance controller andforce field”, Mechatronics, 97, 103112 (2024). https://doi.org/10.1016/j.mechatronics.2023.103112.
28.Rahman Khan, M., Ahmed, T., Pallares, J., et al.“Development of a desktop-mounted rehabilitationrobot for upper extremities” In 4th InternationalConference on Industrial & Mechanical Engineeringand Operations Management (2021).
http://dx.doi.org/10.5281/zenodo.7401965.
29.Kuryto, P., Cyganiuk, J., Frankovsky, P., et al. “Wristrehabilitation with manipulator to perform passive andactive exercises”, 49(2), pp. 52–57 (2019). http://dx.doi.org/10.14311/CTJ.2019.2.03.
30.Cafolla, D., Russo, M., and Carbone, G. “CUBE, acable-driven device for limb rehabilitation”, J. BionicEng., 16(3), pp. 492–502 (2019). http://dx.doi.org/10.1007/s42235-019-0040-5.
31.ALmusawi, H.A. “Design and development of a newhand and wrist rehabilitation robot-assisted system;equipped with game-based therapy, ROM and tip-pinchforce self-assessment approaches”.
32.Baldan, F., Turolla, A., Rimini, D., et al. “Robot-assistedrehabilitation of hand function after stroke:Development of prediction models for reference totherapy”, J. Electromyogr. Kinesiol., 57, 102534 (2021).https://doi.org/10.1016/j.jelekin.2021.102534.
33.Kim, H. and Kim, G.-S. “Development of a finger-rehabilitation robot for fingers’ flexibility rehabilitationexercise”, Int. J. Precis. Eng. Manuf., 14(4), pp. 535–541 (2013). http://dx.doi.org/10.1007/s12541-013-0073-3.
34.Tang, Z., Sugano, S., and Iwata, H. “A novel, MRIcompatible hand exoskeleton for finger rehabilitation”,2011 IEEE/SICE Int. Symp Syst. Integr. (SII), IEEE,., pp.118–123 (2011). https://doi.org/10.1109/SII.2011.6147430.
35.Tjahyono, P., Aw, C., Devaraj, H., et al. “A five-fingeredhand exoskeleton driven by pneumatic artificial muscleswith novel polypyrene sensors”, Ind. Robot an Int. J.,40(3), pp. 251–260 (2013). https://doi.org/10.1108/01439911311309951.
36.Xing, K., Xu, Q., He, J., et al. “A wearable device forrepetitive hand therapy”, Biomed. Robot.Biomechatronic, 2008. Bio Rob 2008. 2nd IEEE RASEMBS Int. Conf., IEEE, pp. 919–923 (2008).http://dx.doi.org/10.1109/BIOROB.2008.4762789.
37.Lambelet, C., Lyu, M., Wooley, D., et al. “The ewrist A wearable wrist exoskeleton with sEMG-based forcecontrol for stroke rehabilitation”, Rehabil. Robot.(ICORR), 2017 Int. Conf., IEEE, pp. 726–733 (2017).https://doi.org/10.1109/ICORR.2017.8009334.
38.O'Malley, K., Burgar, C., Sledd, A., et al. “The ricewrist:A distal upper extremity rehabilitation robot for stroketherapy”, ASME 2006 Int. Mech. Eng. Congr. Expo.,American Society of Mechanical Engineers, pp. 1437–1446 (2006). https://doi.org/10.1115/IMECE2006-16103.
39.HealthCare, “Waveflex hand CPM device”. Available:https://www.remingtonmedical.com/product/waveflex-cpm/ (2019).
40.“KINETECTM MaestraTM Hand & Wrist CPMMachine”. Available: https://www.scribd.com/document/317675512/Catalog-Kinetec-pdf/ (2019).