References:
1. Shehzad, S., Abdullah, Z., Abbasi, F., et al. "Magnetic field effect in three-dimensional flow of an Oldroyd- B nanofluid over a radiative surface", Magnetism and Magnetic Materials, 399, pp. 97-108 (2016).
2. Zheng, L., Niu, J., Zhang, X., et al. "MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump", Mathematical and Computer Modelling, 56(5-6), pp. 133-144 (2012).
3. Gireesha, B., Chamkha, A., Manjunatha, S., et al. "Mixed convective flow of a dusty fluid over a vertical stretching sheet with non uniform heat source/sink and radiation", International Journal of Numerical Methods for Heat & Fluid Flow, 45(2), pp. 757-786 (2013).
4. Atif, S.M., Abbas, M., Rashid, U., et al. "Stagnation point flow of EMHD micropolar nanofluid with mixed convection and slip boundary", Complexity, 2021 (2021).
5. Choi, S.U. and Eastman, J.A. "Enhancing thermal conductivity of fluids with nanoparticles", Technical Report, Argonne National Lab., IL (United States) (1995).
6. Malvandi, A. and Ganji, D. "Effects of nanoparticle migration on force convection of alumina/water nanofluid in a cooled parallel-plate channel", Advanced Powder Technology, 25(4), pp. 1369-1375 (2014).
7. Khanafer, K. and Vafai, K. "A critical synthesis of thermophysical characteristics of nanofluids", International Journal of Heat and Mass Transfer, 54(19-20), pp. 4410-4428 (2011).
8. Sureshkumar, S. and Muthtamilselvan, M. "A slanted porous enclosure filled with Cu-water nanofluid", The European Physical Journal Plus, 131(4), p. 95 (2016).
9. Chen, X., Li, J.M., Dai, W.T., et al. "Enhancing convection heat transfer in mini tubes with nanoparticle suspensions", Journal of Engineering Thermophysics, 25(4), pp. 643-645 (2004).
10. Vishnuvardhanarao, E. and Das, M.K. "Laminar mixed convection in a parallel two sided lid-driven differentially heated square cavity filled with a fluidsaturated porous medium", Numerical Heat Transfer Part A: Applications, 53(1), pp. 88-110 (2007).
11. Khazayinejad, M. and Nourazar, S. "On the effect of spatial fractional heat conduction in MHD boundary layer flow using GrFe3O4 H2O hybrid nanofluid", International Journal of Thermal Sciences, 172, 107265 (2022).
12. Megahed, A.M. "Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity", Applied Mathematics and Mechanics, 40, pp. 1615-1624 (2019).
13. Atif, S.M., Hussain, S., and Sagheer, M. "Heat and mass transfer analysis of time dependent tangent hyperbolic nanofluid flow past a wedge", Physics Letters A, 383(11), pp. 1187-1198 (2019).
14. Atif, S.M., Hussain, S., and Sagheer, M. "Effect of viscous dissipation and Joule heating on MHD radiative tangent hyperbolic nanofluid with convective and slip conditions", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(4), pp. 189-206 (2019).
15. Atif, S.M., Khan, W.A., Abbas, M., et al. "Bioconvection mangnetohydrodynamic tangent hyperbolic nanofluid flow with quartic chemical reaction past a paraboloid surface", Computer Modeling in Engineering & Sciences, 130(1), pp. 205-220 (2022).
16. Hsiao, K.L. "Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet", Applied Thermal Engineering, 98, pp. 850-861 (2016).
17. Atif, S.M., Kamran, A., and Shah, S. "MHD micropolar nanofluid with non Fourier and non Fick's law", International Communications in Heat and Mass Transfer, 122, p. 105114 (2021).
18. Hady, F., Eid, M.R., and Ahmed, M.A. "A nanofluid flow in a nonlinear stretching surface saturated in a porous medium with yield stress effect", Applied Mathematics and Information Science Letters, 2(2), pp. 43-51 (2014).
19. Seth, G.S., Bhattacharyya, A., Kumar, R., et al. "Modelling and numerical simulation of hydromagnetic natural convection Casson fluid flow with n-th order chemical reaction and Newtonian heating in porous medium", J. Porous Med., 22(9), pp. 1141-1157 (2019).
20. Animasaun, I., Koriko, O., Adegbie, K., et al. "Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect", Journal of Thermal Analysis and Calorimetry, 135(2), pp. 873-886 (2019).
21. Shah, S., Rafiq, N., Abdullah, F.A., et al. "Slip and radiative effects on MHD Maxwell nanofluid with non- Fourier and non-Fick laws in a porous medium", Case Studies in Thermal Engineering, 30, p. 101779 (2022).
22. Carreau, P.J. "Rheological equations from molecular network theories", Transactions of the Society of Rheology, 16(1), pp. 99-127 (1972).
23. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, John Wiley and Sons, Inc., New York (1960).
24. Atif, S.M., Hussain, S., and Sagheer, M. "Numerical study of MHD micropolar Carreau nanofluid in the presence of induced magnetic field", AIP Advances, 8, 035219 (2018).
25. Hashim and Khan, M. "A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreau nanofluids", International Journal of Heat and Mass Transfer, 103, pp. 291-297 (2016).
26. Khan, M., Malik, M., Salahuddin, T., et al. "Numerical modeling of Carreau fluid due to variable thicked surface", Results in Physics, 7, pp. 2384-2390 (2017).
27. Martins, R., Silveira, F., and Martins, M. "Numerical investigation of inertia and shear thinning effects in axisymmetric flows of Carreau fluids by a Galerkin leastsquares method", Latin American Applied Research, 38(4), pp. 321-328 (2008).
28. Olajuwon, I.B. "Convection heat and mass transfer in a hydromagnetic Carreau fluid past a vertical porous plate in presence of thermal radiation and thermal diffusion", Thermal Science, 15(2), pp. 241-252 (2011).
29. Atif, S.M., Hussain, S., and Sagheer, M. "Effect of thermal radiation and variable thermal conductivity on magnetohydrodynamics squeezed flow of Carreau fluid over a sensor surface", Journal of Nanofluid, 8, pp. 806-816 (2019).
30. Tshehla, M.S. "The flow of Carreau fluid down an incline with a free surface", International Journal of Physical Sciences, 6, pp. 3896-3910 (2011).
31. Alsemiry, R.D., Sayed, H.M., and Amin, N. "Mathematicalanalysis of Carreau fluid flow and heat transfer within an eccentric catheterized artery", Alexandria Engineering Journal, 61, pp. 523-539 (2022).
32. Reedy, C.S., Srihari, P., Ali, F., et al. "Numerical analysis of Carreau fluid flow over a vertical porous microchannel with entropy generation", Partial Differential Equations in Applied Mathematics, 5, p. 100304 (2022).
33. Thangavelu, M., Nagarajan, N., Oztop, H.F., et al. "MHD convection flow of Ag-water nanofluid in inclined enclosure with center heater", Journal of Mechanics, 37, pp. 13-27 (2020).
34. Selimli, S., Recebli, Z., and Arcaklioglu, E. "MHD numerical analyses of hydrodynamically developing laminar liquid lithium duct flow", International Journal of Hydrogen Energy, 40(44), pp. 15358-15364 (2015).
35. Idowu, A.S., Akolade, M.T., Abubakar, J.U., et al. "MHD free convective heat and mass transfer flow of dissipative Casson fluid with variable viscosity and thermal conductivity effects", Journal of Taibah University for Science, 14(1), pp. 851-862 (2020).
36. Selimli, S., Recebli, Z., and Arcaklioglu, E. "Combined effects of magnetic and electrical field on the hydrodynamic and thermophysical parameters of magnetoviscous fluid flow", International Journal of Heat and Mass Transfer, 86, pp. 426-432 (2015).
37. Iqbal, M.S., Mustafa, I., Riaz, I., et al. "Influence of carbon nanotubes on heat transfer in MHD nanofluid flow over a stretchable rotating disk: A numerical study", Heat Transfer, 50(1), pp. 619-637 (2021).
38. Gupta, S., Gupta, S., and Sharma, A. "Darcy Forchheimmer flow of MHD Jeffrey nanoliquid over a permeable cone with Cattaneo-Christov heat and mass flux theories", Indian Journal of Physics, 96, pp. 503-513 (2022).
39. Gopal, D., Saleem, S., Jagadha, S., et al. "Numerical analysis of higher order chemical reaction on electrically MHD nano fluid under influence of viscous dissipation", Alexandria Engineering Journal, 60(1), pp. 1861-1871 (2021).
40. Waqas, H., Kafait, A., Alghamdi, M., et al. "Thermobioconvectional transport of magneto-Casson nanofluid over a wedge containing motile microorganisms and variable thermal conductivity", Alexandria Engineering Journal, 61(3), pp. 2444-2454 (2022).
41. Rout, B. and Mishra, S. "Thermal energy transport on MHD nanofluid flow over a stretching surface: A comparative study", Engineering Science and Technology, an International Journal, 21(1), pp. 60-69 (2018).
42. Eid, M.R., Mahny, K., Dar, A., et al. "Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species", Physica A: Statistical Mechanics and its Applications, 540, p. 123063 (2020).