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Abstract. In this investigation, the combined e�ects of magnetohydrodynamic and
Arrhenius activation energy on Carreau nanouid past a nonlinear stretching sheet are
examined. Buongiorno nanouid model is considered to study the impact of nanoparticles
with a porous medium. To analyze the modeled problem, this study incorporates
convective heating mode and heat source/sink. With the help of appropriate similarity
transformations, formulated Partial Di�erential Equations (PDEs) are transmuted into
nonlinear Ordinary Di�erential Equations (ODEs). The solution of the resulting ODEs is
achieved via shooting technique. In the limiting case, the results are numerically computed
and compared with the already reported results for the validity of the MATLAB code, and
splendid agreement is found between the results. Variations in uid motion, temperature,
and concentration due to changes in di�erent parameters are analyzed graphically and
discussed in detail. Our simulations reveal that the temperature pro�le increases following
an increase in the Biot number, Arrhenius energy parameter, and magnetic number.
According to the results, the skin friction coe�cient is enhanced at higher values of the
stretching parameter. Moreover, the enhancement of skin friction coe�cient is more in
shear thickening behavior as compared to shear thinning behavior of the uid.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In engineering and industrial processes, it is of signi�-
cance to analyze uid ow. Metal, extrusion, spinning,
wired drawing, manufacturing of rubber sheets, food
manufacturing, and cooling of vast metallic plates like
electrolyte are common examples. In recent time,
numerous researchers [1{4] have taken measures to
investigate the phenomenon of uid ow through the
stretching surface. They studied that the implementa-
tion of magnetic �eld would result in the slowness of
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the uid motion. The small solid particle is termed as
nanoparticle; such nanoparticles range from 1 to 100
nanometers in size. In 1995, Choi and Eastman [5]
put forward the term nanouid in their pioneering
work. Due to the corresponding prospective engineer-
ing application, various researchers performed many
detailed studies on this topic. Nanotechnology has a
vast range of applications in the �elds of science and
technology in modern developments. Recently, the
improvement in nanotechnology has increased expo-
nentially. Malvandi and Ganji [6] observed the studied
forced convection phenomenon in a channel containing
nanoparticles. They analyzed that the suction from
the surface enhanced the Nusselt number, while the
blowing was reduced. The critical observation done
on the characteristics of nanouids was conducted
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by Khanafer and Vafai [7]. They found that the
viscosity of e�ective nanouids increased as the volume
fraction was enhanced, whereas it decreased with an
increment in the temperature. Furthermore, Cu-H2O
on a porous surface was discussed by Sureshkumar
and Muthtamilselvan [8]. The analysis of the driven
cavity ow with various properties of heat exchange
in nanouid was carried out in [9,10]. Recently,
the nanouid ow through various shape geometries
has caught noticeable attention from di�erent �elds.
The e�ect of spatial fractional heat conduction in
the magnetohydrodynamic (MHD) boundary layer ow
using Gr-Fe3O4-H2O hybrid nanouid was investigated
by Khazayinejad and Nourazar [11]. Megahed [12]
studied the Carreau uid ow due to a nonlinearly
stretching sheet with thermal radiation, heat ux, and
variable conductivity. Atif et al. [13{15] observed the
tangent hyperbolic nanouid ow past a linear stretch-
ing surface, wedge, and paraboloid surface. Hsiao [16]
carried out electrical magnetohydrodynamics Carreau
and micropolar nanouid ow with the impact of dif-
ferent parameters. Micropolar nanouid with modi�ed
Fourier and Fick's law was ascertained by Atif et al.
[17]. Using porous media, further experiments were
performed to study the boundary layer ow past a
nonlinear stretched sheet [18{21].

The analysis of peristaltic motion in Carreau uid
with chemical reactions has motivated the researchers
to analyze its usage in industry, engineering, and
medical science like biochemistry, diagnostic therapy,
neurology, and treatment for cancer. The Carreau
model [22] falls into the category of non-Newtonian
uid models with high and low shear rates for which the
constituent relationship accumulates. To explain non-
Newtonian uids, several experimental terms have been
proposed based on various characteristics obtained
by Bird [23]. Due to the distinct application of
Carreau model in engineering and technology, various
researchers have worked on properties of such model
types. Atif et al. [24] illustrated the behavior of
Carreau uid ow past a channel in the presence of
microcantilever sensor. Moreover, di�erent researchers
have investigated the Carreau uid model for deal-
ing with various ow problems [25,26]. Martins et
al. [27] investigated the numerical analysis of shear
thinning axisymmetric ow impacts of a Carreau uid.
Olajuwon [28] numerically illustrated the heat and
mass exchange in a hydromagnetic Carreau uid with
radiation and thermal di�usion. Atif et al. [29] studied
the micropolar Carreau nanouid with thermal radi-
ation e�ects. Tshehla [30] analyzed the free surface
of the Carreau uid owing down on an inclined
plane. Mathematical analysis of Carreau uid ow and
heat transfer within an eccentric catheterized artery
was conducted by Alsemiry et al. [31]. Numerical
analysis of Carreau uid ow over a vertical porous

microchannel with entropy generation was carried out
by Reedy et al. [32]. One of the main observations
was that the entropy generation was reduced with an
increase in the Weissenberg number.

Recently, the convective ow of Ag-water MHD
nanouid was studied by Thangavelu et al. [33]. Selimli
et al. [34] performed the MHD numerical analyses of
hydrodynamically developing laminar liquid lithium
duct ow. MHD dissipative Casson uid with variable
properties was analyzed by Idowu et al. [35]. One of
the key observations was that the variable viscosity
reduced the uid motion near the surface where it is
accelerated away from the surface. Combined e�ects of
magnetic and electrical �elds on the hydrodynamic and
thermophysical parameters of magneto-viscous uid
ow were ascertained by Selimli et al. [36]. The e�ect of
the carbon nanotubes (CNT) on MHD nanouid past
a stretchable rotating disk was analyzed by Iqbal et
al. [37] and it was concluded that an increase in the
CNT in base uid would enhance the heat transfer
rate. Darcy-Forchheimer MHD Je�ery nanouid ow
past a permeable cone was presented by Gupta et
al. [38]. One of the main observations was that the
uid motion hiked with an increase in the value of the
porosity parameter. Gopal et al. [39] ascertained the
EMHD nanouid ow under the e�ect of higher-order
chemical reaction. Thermo-bioconvectional transport
of magneto-Casson nanouid over a wedge containing
motile microorganisms and variable thermal conduc-
tivity was analyzed by Waqas et al. [40]. Rout and
Mishra [41] studied the energy transport phenomenon
in MHD nanouid ow over a stretching surface. One
of the key observations was that the surface heat ux
increased following an increase in the value of the
radiation parameter.

Based on a review of the literature, it came to
our attention that MHD Carreau nanouid ow past
a nonlinear porous stretching sheet with Arrhenius
activation energy has not been studied yet. For the e�-
cient heat transfer phenomenon, Joule heating and heat
generation/absorption have been incorporated into the
energy equation. The governing Partial Di�erential
Equations (PDEs) of momentum, temperature, and
concentration are transformed into Ordinary Di�eren-
tial Equations (ODEs) by means of similarity transfor-
mations. The system of nonlinear ODEs is solved using
shooting method together with RK4. Matlab code
is veri�ed by reproducing already published results.
The graphs are used to study the variations due to
governing parameters including temperature, velocity,
and concentration distribution.

2. Mathematical model

A two-dimensional MHD Carreau nanouid past a
nonlinear stretching sheet in a porous medium was
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considered. The sheet was stretched with velocity
uw(x) = bxm in a region y > 0, where b and m
are the positive constant and stretching parameter,
respectively. The surface temperature is considered
as Tw and uid's temperature is taken as Tf . No
nanoparticles in the ux condition are considered
at the boundary, meaning that the uid is strongly
a�ected by thermophoresis. Fluid is subjected to
temperature gradient; at an extremely large value of y,
the nanoparticles concentration and temperature are
assumed constant and are denoted by C1 and T1,
respectively. Along y{axis, a magnetic �eld having B0
strength is implemented, as illustrated in Figure 1.

In the light of the above assumptions the equa-
tions describing the motion, temperature and concen-
tration are as follows:

ux + vy = 0; (1)

uux + vuy = �uyy
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1 + �2(uy)2�n�1

2
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� E�
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�
: (4)

The boundary conditions are:

u = uw(x) = bxm; v = 0; kTy = �hf (Tw � T );

Figure 1. Flow con�guration.

DBCy +
DT

T1
Ty = 0 at y = 0;

u! 0; T ! T1;

C ! C1 as y !1: (5)

We convert PDEs and these boundary conditions into
the ODEs by adopting the following similarity vari-
able [42].

 (x; y) =
r

2�b
m+ 1

x
m+1

2 f(�);

� = y
r
b(m+ 1)

2�
x
m�1

2 ;

�(�) =
T � T1
Tw � T1 ; �(�) =

C � C1
Cw � C1 : (6)

The continuity equation is automatically satis�ed and
Eqs. (2){(4) yield the following:h
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The associated BCs are:

f(�) = 0; f 0(�) = 1; �0(�) = Bi(�(�)� 1);

Nb�0(�) +Nt�0(�) = 0; at � = 0;

f 0 ! 0; � ! 0; �! 0 as � !1; (10)

where:

- K1 = �
k(bum�1

w )
1
m

: The porosity parameter;

- � = Q0

(�cp)f (bum�1
w )

1
m

: Heat source if � > 0 and sink

parameter if � < 0;
- Pr = �

� : The Prandtl number;

- E = E�
T1K� : The Arrhenius activation energy param-

eter;

- Nt = (�cp)pDT (Tw�T1)
(�cp)f�fT1 : Thermophoresis parameter;
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- W 2
e = b3(m+1)�2

2� x3m�1: The Weissenberg number;
- Le = �

DB : Lewis number;

- 1 = �R1

DB(bum�1
w )

1
m

: Chemical reaction parameter;

- M = 2�B2
0

�(m+1)bxm�1 : The magnetic parameter;

- Bi = hf

x
m�1

2 K
q
b(m+1)

2�

: The Biot number;

- Nb = (�cp)pDB(Cw�C1)
(�cp)f�f : The Brownian motion

parameter;
- Ec = b2x2m

cp(Tw�T1) : The Eckert number.

The skin friction coe�cient Cfx, heat transfer
coe�cient Nux and mass transfer coe�cient Shx in
the dimensional form are as follows:

Cfx =
�w
�u2

w
; Nux =

xqw
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;
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xqm
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: (11)

In the non-dimensional form, we have:
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3. Implementation of the method

The modeled equations along with the BCs are tackled
via the shooting technique. For this purpose, the new
variables are introduced %1 = f , %2 = f 0, %3 = f 00,
%4 = �, %5 = �0, %6 = �, and %7 = �0.
%01 = %2; %02 = %3;
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with boundary conditions:
%1 = 0; %2 = 1; %5 = Bi(%4 � 1);

%7 = �Nt
Nb

%5 at � = 0;

%2 ! 0; %4 ! 0;

%6 ! 0; as � !1: (14)

To solve the above system of seven �rst-order ordi-
nary di�erential Eq. (13), with the assistance of the
shooting method, seven initial conditions are required.
Therefore, we guess the three unknown conditions as
%3(0) = s1, %4(0) = s2, and %6(0) = s3 . The suitable
guesses for s1, s2, and s3 are chosen, such that the three
known boundary conditions are approximately satis�ed
for � ! 1. The Newton's iterative scheme is applied
to improve the accuracy of the initial guesses s1, s2,
and s3 until the desired approximation is met. In a
the computations for the rest of this article, � has been
chosen as 10�6. The computations at di�erent values of
the emerging physical parameters have been performed
over the appropriate bounded domain �max instead of
[0;1). It is observed that at the increasing high values
of �max, there is no signi�cant change observed in the
results. The stopping criterion for the iterative process
is:

maxfj%2(�max)� 0j; j%4(�max)� 0j; j%6(�max)� 0jg
< �;

where � is a very small positive real number.

3.1. Code validation
To check the correctness of the code, the numerical
values of the Nusselt number are reproduced, as re-
ported by Hashim and Khan [25] in the literature and
presented in Table 1. These assessments indicate the
admirable agreement.

4. Results and discussions

Table 2 is organized to analyze the e�ect of governing
parameters like m;M;We;K1 on skin friction coe�-
cient (CfxRe

1=2
x ). Both shear thinning n < 1 and shear

thickening n > 1 behaviors were analyzed. From this
table, it was observed that the skin friction coe�cient
was enhanced at higher values of m;M , and We. It was
also observed that the enhancement of the skin friction
was greater due to the shear thickening behavior than
the shear thinning behavior. The value of the skin
friction coe�cient decreased upon increase in the values
of K1.

Numerical simulations were performed for di�er-
ent physical parameters in governing equations of the
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Table 1. Comparative values for ��0(0) at di�erent values of Pr, Nt, Le when We = 3, Nb = 0:5, � =  = K1 = 0.

��0(0)

Pr Nt Le m Hashim & Khan [25] Present study

n = 0:5 n = 1:5 n = 0:5 n = 1:5

1 0.1 1 2 0.6140 0.7354 0.6140 0.7354

3 1.2440 1.4198 1.2440 1.4198

5 1.6635 1.8615 1.2440 1.4198

2 0.3 0.9215 1.0758 0.9215 1.0758

0.5 0.8727 1.0243 0.8727 1.0243

0.7 0.8252 0.9738 0.8252 0.9738

0.1 0.5 0.9808 1.1379 0.9808 1.1379

1.5 0.9649 1.1209 0.9649 1.1209

2.5 0.9563 1.1114 0.9563 1.1114

1 1 0.8144 0.9314 0.8144 0.9314

2 1.10776 1.1295 1.10776 1.1295

0.5 1.3406 1.5785 1.3406 1.5785

Table 2. Numerical outcomes of skin �ction coe�cient

CfxRe
1
2
x .

M We m K1 �CfxRe 1
2
x

n = 0:5 n = 1:5

1 0.5 2 1 1.48601 1.55860

1.5 1.69785 1.80263

2 1.88115 2.02062

1 1 1.39580 1.62546

2 1.21203 1.75787

3 1.08336 1.86797

0.5 1 0.98379 1.01772

2 1.48601 1.55860

3 1.85515 1.95890

2 1 1.48601 1.55860

2 1.13297 1.16820

3 0.64842 0.65751

MHD Carreau nanouid with activation energy. For
the whole study, the considered standard parameters
are Pr = m = 2, Bi = Le = 1, We = 3, 1 =
Nt = � = 0:1, Nb = 0:5, E = 0:2, Ec = K1 = 0:5,
and 2 = 0:9, unless mentioned otherwise. All the
simulations were performed for both shear thickening
and thinning e�ects of Carreau nanouid.

Figures 2{4 illustrate the impact of porosity
parameter K1 on velocity f 0(�), temperature �(�), and
concentration �(�) pro�les for dilatant and pseudoplas-

Figure 2. Variation in f 0(�) caused by K1.

tic nanouids. It was found that with an increase
in the value of porosity parameter K1, f 0(�) was
reduced. However, �(�) and �(�) pro�les increased
following the rise in the values of porosity parameter
K1. Figures 5 and 6 show the e�ect of magnetic
parameter M on f 0(�), �(�), and �(�). It is noticeable
that velocity f 0(�) is continuously reduced by boosting
M . Increasing the value of M usually creates Lorentz
force by which �(�) is increased, as shown in Figure 6.
Physically, larger values of M are indicative of a higher
opposing force due to which the thickness of nanouid
boundary layer and �(�) is upsurged. Figure 7 shows
the impact of 1 on �(�). From these curves, it can be
seen that the larger values of 1 result in a decline in the
chemical molecular di�usion; hence, �(�) is reduced.
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Figure 3. Variation in K1 caused by �(�).

Figure 4. Variation in �(�) caused by K1.

Figure 5. Variation in f 0(�) caused by M .

Figures 8{11 study the e�ect of heat source � >
0 and heat sink parameter � < 0 on temperature
distribution �(�) and concentration distribution �(�)
for dilatant and pseudoplastic nanouids. Increasing
values of � > 0 increases both temperature and
concentration distribution, as presented in Figures 8

Figure 6. Variation in �(�) caused by M .

Figure 7. Variation in �(�) caused by 1.

Figure 8. Variation in �(�) caused by � > 0.

and 9. However, the inverse trend is seen for heat
sinking parameter � < 0, as shown in Figures 10 and
11. Figures 12 and 13 show a relationship among
the Biot number Bi, energy �(�), and concentration
�(�). Both �(�) and �(�) experience a rise following
an increase in the value of Bi. Increase in the Bi
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Figure 9. Variation in �(�) in � > 0.

Figure 10. Variation in �(�) caused by � < 0.

Figure 11. Variation in �(�) caused by � < 0.

value causes a decline in the conductivity of the uid,
leading to the rise of �(�) and the concentration pro�le
�(�). The e�ect of Arrhenius activation energy E on
temperature distribution �(�) and the concentration
pro�le �(�) is shown in Figures 14 and 15. Figure 14
shows that �(�) increases with a rise in the value of E.

Figure 12. Variation in �(�) caused by Bi.

Figure 13. Variation in �(�) caused by Bi.

Figure 14. Variation in �(�) caused by E.

The concentration pro�le rises following the increase
of E value. Accordingly, the above �ndings point to
the increased concentration of the modi�ed Arrhenius
structure. Therefore, the overall chemical reaction is
escalated, as presented in Figure 15. The Ec results
for f 0(�) and �(�) are characterized in Figures 16 and
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Figure 15. Variation in �(�) caused by E.

Figure 16. Variation in �(�) caused by Ec.

Figure 17. Variation in �(�) caused by Ec.

17. The kinetic energy of the uid particle increases
as Ec assumes a high value. It is observed that an
increment in Ec results in a hike in �(�). Therefore,
the velocity and temperature of the uids climb slightly
and the thickness of the related boundary layer in-
creases. Physically, dissipation increases upon raising

Figure 18. Variation in NuxRe�1=2
x caused by � < 0 and

K1 with n = 0:5.

Figure 19. Variation in NuxRe�1=2
x caused by � < 0 and

K1 with n = 1:5.

Ec values due to increase in the dissipation of internal
uid energy. Figure 17 is sketched for analysis of Ec
e�ect on the concentration pro�le. The concentration
pro�le is clearly increasing due to increase in Ec. The
increase in the value of Ec is due to the rise of the uid
thermal energy. However, in case of shear thinning
behavior, the thickness of the concentration boundary
layer is higher than the shear thickening nanouid.

Figures 18 and 19 represents the variation in
Nusselt number due to porosity parameter and distinct
values of chemical reaction parameter for both cases
n = 0:5 and n = 1:5. It is concluded that as the values
of K1 and � increase, the magnitude of NuxRe

�1=2
x

is enhanced. Figures 20 and 21 display the variation
in Sherwood number with respect to K1 at di�erent
values of � > 0. It is noticeable that increase in each
of K1 and � > 0 induces a decrement in ShxRe

�1=2
x .

Figures 22 and 23 represent the uctuation in the mass
transfer rate with K1 at higher values of � as well as
the values of n = 0:5 and n = 1:5. It is clear that
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Figure 20. Variation in ShxRe�1=2
x caused by � > 0 and

K1 with n = 0:5.

Figure 21. Variation in ShxRe�1=2
x caused by � > 0 and

K1 with n = 1:5.

Figure 22. Variation in ShxRe�1=2
x caused by � < 0 and

K1 with n = 0:5.

Figure 23. Variation in ShxRe�1=2
x caused by � < 0 and

K1 with n = 1:5.

increase in � causes ShxRe
�1=2
x to decrease, whereas it

increases as the porosity parameter is enhanced.

5. Conclusion

In this study, a computational investigation of magne-
tohydrodynamic (MHD) Carreau nanouid ow in a
porous medium was carried out with heat source/sink
and chemical reaction. The main observations of this
numerical study are as follows:

� f 0 was enhanced as K1 increased, whereas it de-
creased as M rose;

� A decrement in the concentration was observed
because of rising values of � > 0, K1, and � < 0;

� The concentration �(�) fell at a larger estimation of
chemical reaction;

� The skin friction coe�cient was enhanced upon
increasing the values of m;M; and We. It was also
observed that the enhancement of the skin friction
was greater in the case of shear thickening behavior
than the shear thinning behavior.

Nomenclature

b Constant
Bi Biot number
C Nanoparticle volume fraction
Cp Speci�c heat
Cw Concentration at the surface
C1 Ambient Volume Concentration
Cfx Skin friction coe�cient
DB Brownian di�usion
DT Thermophoresis
f Dimensionless stream function
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hf Heat transfer coe�cient
K Permeability of porous medium
K1 Porosity parameter
k Thermal conductivity
Le Lewis number
m Stretching parameter
n Power law index
Nb Brownian motion parameter
Nt Thermophoresis parameter
Pr Prandtl number
Q0 Heat absorption/generation coe�cient
R1 Chemical reaction
Rea Local Reynolds number
T Temperature of uid
T1 Ambient temperature
Tw Temperature on the surface
u; v Velocity components
uw Stretching sheet velocity
We Weissenberg number
x; y Space coordinates
M Magnetic �eld parameter
Shx Local Sherwood number

Nux Local Nusselt Number
Ec Eckert Number
E Activation Energy

Greek symbols

� Thermal di�usivity
� Heat source
1 Chemical reaction parameter
� Nondimensional temperature
� Electrical conductivity
� Dynamic viscosity
�� Stefan-Boltzmann constant
�T Temperature gradient
2 Temperature di�erence parameter
� Density
� Kinematic viscosity
� Relaxation parameter
(�cf ) Heat capacity of the base uid
(�cp) Heat capacity of the nanoparticle
� Viscosity
�0 Zero shear viscosity
�1 In�nity shear viscosity
 Stream function
� Dimensionless similarity variable

� Dimensionless temperature
� Dimensionless concentration
� The ratio of heat capacities
�w Surface shear stress
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