Quadrature oscillator based on novel low-voltage ultra-low-power quasi-floating-gate DVCC

Document Type : Article

Authors

1 Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, Kladno, Czech Republic

2 Department of Microelectronics, Brno University of Technology, Technicka 10, Brno, Czech Republic

3 Department of Telecommunications, Brno University of Technology, Purkynova 118, Brno, Czech Republic

Abstract

In this work, a new realization topology of the low-voltage ultra-low-power quadrature oscillator is presented. This quadrature oscillator utilizes only two active elements, namely differential voltage current conveyor (DVCC), and five passive ones, all of them are grounded, which is recommended for the integrated circuit implementation. The DVCC is based on quasi-floating-gate MOS transistor, which is a distinct technique from the conventional one, featuring with operation at low-voltage and ultra-low-power conditions; hence the proposed DVCC works with low supply voltage of ± 400 mV and consumes power of merely 6.6 µW. Thanks to these features the total power dissipation of the oscillator is only 0.28 mW. The simulation results using 0.18 µm TSMC CMOS technology are included in order to prove the design correctness.

Keywords

Main Subjects


References
1. Lasane, K. Integrated Analogue CMOS Circuits and
Structures for Heart Rate Detectors and Other Low-
Voltage, Low-Power Applications, University of Oulu,
pp. 1-118, Finland (2011).
2. Rajput, S.S. and Jamuar, S.S. \Low voltage analog
circuit design techniques", IEEE Circuits and Systems
Magazine, 2(1), pp. 24-42 (2002).
3. Hsu, C., Ho, M., Wu, Y., and Chen, T. \Design of
low-frequency low-pass lters for biomedical applications",
IEEE Asia Paci c Conference on Circuits and
Systems, pp. 690-695 (2006).
4. Rodriguez-Villegasa, E., Corbishley, P., Martinez,
C.L., and Rodriguez, T.S. \An ultra-low-power precision
recti er for biomedical sensors interfacing", Sensors
and Actuators A: Physical, 153(2), pp. 222-229
(2009).
5. Veeravalli, A., Sanchez-Sinencio, E., and Silva-
Martinez, J. \A CMOS transconductance ampli er
architecture with wide tuning range for very low
frequency applications", IEEE Journal of Solid-State
Circuits, 37(6), pp. 776-781 (2002).
6. Wong, L.S.Y., Hossain, S., Ta, A., Edvinsson, J.,
Rivas, D.H., and Naas, H. \A very low-power CMOS
mixed-signal IC for implantable pacemaker applications",
IEEE Journal of Solid-State Circuits, 39(12),
pp. 2446-2456 (2004).
7. Martinez, J.S. and Suner, J.S. \IC voltage to current
transducers with very small transconductance", AnaF.
Khateb et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3477{3489 3487
log Integrated Circuits and Signal Processing, 13(3),
pp. 285-293 (1997).
8. Rodriguez-Villegas, E., Low Power and Low Voltage
Circuit Design with the FGMOS Transistor, The Institution
of Engineering and Technology, UK, pp. 1-304
(2006).
9. Aggarwal, B. and Gupta, M. \Low-voltage bulkdriven
class AB four quadrant CMOS current multiplier",
Analog Integrated Circuits and Signal Processing,
65(1), pp. 163-169 (2010).
10. Raikos, G. and Vlassis, S. \0.8 V bulk-driven operational
ampli er", Analog Integrated Circuits and Signal
Processing, 63(3), pp. 425-432 (2010).
11. Khateb, F., Khatib, N., and Kubanek, D. \Novel lowvoltage
low-power high-precision CCII based on bulkdriven
folded cascode OTA", Microelectronics Journal,
42(5), pp. 622-631 (2011).
12. Carrillo, J.M., Torelli, G., Perrez-Aloe, R., Valverde,
J.M., and Duque-Carrillo, J.F. \Single-pair bulkdriven
CMOS input stage: a compact low-voltage
analog cell for scaled technologies", Integration, The
VLSI Journal, 43(3), pp. 251-257 (2010).
13. Urban, C., Moon, J.E., and Mukund, P.R. \Scaling
the bulk-driven MOSFET into deca-nanometer bulk
CMOS processes", Microelectronics Reliability, 51(4),
pp. 727-732 (2011).
14. Carrillo, J.M., Perez-Aloe, R., Valverde, J.M., and
Duque-Carrillo, J.F. \Compact low-voltage rail-to-rail
bulk-driven CMOS opamp for scaled technologies",
European Conference on Circuit Theory and Design,
pp. 263-266 (2009).
15. Carrillo, J.M., Torelli, G., Perez-Aloe, R., and Duque-
Carrillo, J.F. \1-V rail-to-rail CMOS OpAmp with
improved bulk-driven input stage", IEEE Journal of
Solid-State Circuits, 42(3), pp. 508-517 (2007).
16. Raikos, G. and Vlassis, S. \Low-voltage bulk-driven
input stage with improved transconductance", International
Journal of Circuit Theory and Applications,
39(3), pp. 327-339 (2011).
17. Gupta, M. and Pandey, R. \Low-voltage FGMOS
based analog building blocks", Microelectronics Journal,
42(6), pp. 903-991 (2011).
18. Gupta, M. and Pandey, R. \FGMOS based voltagecontrolled
resistor and its applications", Microelectronics
Journal, 41(1), pp. 25-32 (2010).
19. Pandey, R. and Gupta, M. \FGMOS based tunable
grounded resistor", Analog Integrated Circuits and
Signal Processing, 65(3), pp. 437-443 (2010).
20. Madhushankara, M. and Kumar Shetty, P. \Floating
gate Wilson current mirror for low power applications",
Communications in Computer and Information
Science, Springer, Berlin, 197, pp. 500-507 (2011).
21. Khateb, F., Khatib, N., and Koton, J. \Novel lowvoltage
ultra-low-power DVCC based on
oating-gate
folded cascode OTA", Microelectronics Journal, 42(8),
pp. 1010-1017 (2010).
22. Berg, Y., Nss, ?, H?vin, M.E., and Gundersen, H.
\Ultra low-voltage
oating-gate (FGUVMOS) ampli-
ers", Analog Integrated Circuits and Signal Processing,
26(1), pp. 63-73 (2001).
23. Khateb, F., Khatib, N., and Kubanek, D. \Novel
ultra-low-power class AB CCII+ based on
oatinggate
folded cascode OTA", Circuits Systems and Signal
Processing, 31(2), pp. 447-464 (2012).
24. Thongleam, T., Suadet, A., and Kasemsuwan, V. \A
0.8 V quasi-
oating-gate fully di erential CMOS opamp
with positive feedback", 8th International Conference
on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology
(ECTI-CON), pp. 98-101 (2011).
25. Moradzadeh, H. and Azhari, S.J. \High performance
low-voltage QFG-based DVCC and a novel fully di erential
SC integrator based on it", IEICE Electronics
Express, 5(23), pp. 1017-1023 (2008).
26. Khateb, F., Bay Abo Dabbous, S., and Vlassis, S. \A
survey of non-conventional techniques for low-voltage
low-power analog circuit design", Radioengineering J.,
22(2), pp. 415-427 (2013).
27. Lopez-Martin, A.J., Angulo, J.R., Carvajal, R.G., and
Acosta, L., \Micropower high current-drive class AB
CMOS current-feedback operational ampli er", International
Journal of Circuit Theory and Applications,
39(9), pp. 893-903 (2010).
28. Lopez-Martin, A.J., Acosta, L., Alberdi, C.G., Carvajal,
R.G., and Angulo, J.R. \Power-ecient analog
design based on the class AB super source follower",
International Journal of Circuit Theory and Applications,
40(11), pp. 1143-1163 (2011).
29. Torralba, A., Lujan-Martinez, C., Carvajal, R.G.,
Galan, J., Pennisi, M., Angulo-Ramirez, J., and
Lopez-Martin, A. \Tunable linear MOS resistors using
quasi-
oating-gate techniques", IEEE Transactions on
Circuits and Systems II, 56(1), pp. 41-45 (2009).
30. Zhang, B.J., Yang, Y.T., and Zhang, H.J. \A fully
balanced fth-order low-pass Chebyshev lter based
on quasi-
oating gate transistors", IEEE Conference
on Electron Devices and Solid-State Circuits, pp. 537-
540 (2005).
31. Gupta, R., Sharma, S., and Jamuar, S.S. \A low
voltage current mirror based on quasi-
oating gate
MOSFETs", IEEE Asia Paci c Conference on Circuits
and Systems, pp. 580-583 (2010).
32. Safari, L. and Azhari, S.J. \An ultra low power, low
voltage tailless QFG based di erential ampli er with
high CMRR, rail to rail operation and enhanced slew
rate", Analog Integrated Circuits and Signal Processing,
67(2), pp. 241-252 (2011).
33. Alberdi, C.G., Lopez-Martin,, A.J., Acosta, L., Carva3488
F. Khateb et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3477{3489
jal, R.G., and Ramirez-Angulo, J. \Class AB CMOS
tunable transconductor", 53rd IEEE International
Midwest Symposium on Circuits and Systems, pp. 596-
599 (2010).
34. Algueta Miguel, J.M., De La Cruz Blas, C.A. and
Lopez-Martin, A.J. \CMOS triode transconductor
based on quasi-
oating-gate transistors", Electronics
Letters, 46(17), pp. 1190-1191 (2010).
35. Miguel, J.M.A., Lopez-Martin, A.J., Acosta, L.,
Ramirez-Angulo, J., and Carvajal, R.G. \Using
oating
gate and quasi-
oating gate techniques for railto-
rail tunable CMOS transconductor design", IEEE
Transactions on Circuits and Systems I, 58(7), pp.
1604-1614 (2011).
36. Calvo, B., Lopez-Martin, A.J., Balasubramanian, S.,
Ramirez-Angulo, J., and Carvajal, R.G. \Linearenhanced
V to I converters based on MOS resistive
source degeneration", IEEE International Symposium
on Circuits and Systems, pp. 3118-3121 (2008).
37. Hassan, T.M. and Mahmoud, S.A. \New CMOS
DVCC realization and applications to instrumentation
ampli er and active-RC lters", AEU - International
Journal of Electronics and Communications, 64(1),
pp. 47-55 (2010).
38. Khan, I.A. and Beg, P. \Fully di erential sinusoidal
quadrature oscillator using CMOS DVCC", International
Conference on Communication, Computer and
Power, pp. 196-198 (2009).
39. Ibrahim, M.A., Minaei, S., and Kuntman, H. \DVCC
based di erential-mode all-pass and notch lters with
high CMRR", International Journal of Electronics,
93(4), pp. 231-240 (2006).
40. Soliman, A.M. \Low voltage wide range CMOS di erential
voltage current conveyor and its applications",
Contemporary Engineering Sciences, 1(3), pp. 105-126
(2008).
41. Naik, A.P. and Devashrayee, N.M. \Characterization
of a CMOS di erential current conveyor using 0.25
micron technology", International Journal of Advanced
Engineering & Applications, 23, pp. 177-182 (2010).
42. Chen, H.P. \Tunable versatile current-mode universal
lter based on plus-type DVCCs", AEU - International
Journal of Electronics and Communications, 66(4),
pp. 332-339 (2012).
43. Chen, H.P. and Shen, S.S. \A versatile universal
capacitor-grounded voltage-mode lter using DVCCs",
ETRI Journal, 29(4), pp. 470-476 (2009).
44. Khateb, F., Khatib, N., and Kubanek, D. \Lowvoltage
ultra-low-power current conveyor based on
quasi-
oating gate transistors", Radioengineering J.,
21(2), pp. 725-735 (2012).
45. Minaei, S., Ibrahim, M.A., and Kuntman, H. \DVCC
based current-mode rst-order all-pass lter and its
application", 10th IEEE International Conference on
Electronics, Circuits and Systems, pp. 276-279 (2003).
46. Horowitz, P. and Hill, W. The Art of Electronics,
Cambridge University Press, U.K., pp. 1-291 (1991).
47. Tietze, U. and Schenk, C.K., Electronic Circuits:
Design and Applications, Springer, pp. 795-796 (1991).
48. Holzel, R. \A simple wide-band sine wave quadrature
oscillator", IEEE Transactions on Instrumentation
and Measurement, 42(3), pp. 758-760 (1993).
49. Khan, I.A. and Khwaja, S. \An Integrable gm-C
quadrature oscillator", International Journal of Electronics,
87(11), pp. 1353-1357 (2000).

Volume 25, Issue 6
Transactions on Computer Science & Engineering and Electrical Engineering (D)
November and December 2018
Pages 3477-3489
  • Receive Date: 01 April 2015
  • Revise Date: 22 November 2016
  • Accept Date: 02 January 2017