Simulation of Interdendritic Liquid Permeability for Low and High Solid Fractions During Solidification of Mushy Alloys

Author

Department of Mining and Metallurgical Engineering,Amirkabir University of Technology

Abstract

A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth and segregation in Al-Si alloys. Therefore, in the present work, two separate computational models of grain growth and interdendritic liquid flow are coupled for modeling of the permeability in partly solid alloy. Grain growth is simulated, using a Cellular Automation Finite Difference (CAFD) for a 2D dendrite and fluid flow by using a Computational Fluid Dynamic (CFD) model for determining permeability. A new model has been presented for calculation and modification of dendrite permeability in high solid fractions. Simulation results show which Si concentration variations, at each time step, could transform the dendrite shape. Also, dendrite morphology could alert the interdendritic permeability factor.

Volume 13, Issue 3 - Serial Number 3
Transactions on Civil Engineering (A)
July 2006
  • Receive Date: 27 September 2006
  • Revise Date: 21 December 2024
  • Accept Date: 30 September 2006