An accurate mathematical approach for calculating capillary pressure in drainage and imbibition from centrifuge data

Document Type : Research Article

Authors

Department of Petroleum Engineering, Research Institute of Petroleum Industry, Tehran, Iran.

10.24200/sci.2023.62485.7866

Abstract

The conversion of centrifuge data into capillary pressure curves is crucial for rock capillary pressure measurement in various applications. This process involves converting measured fluid productions into local saturation values, and the accuracy and efficiency of this procedure are essential. This paper addresses the challenge of achieving accuracy without sacrificing computational efficiency by introducing a new method based on the Reproducing Kernel Hilbert Space (RKHS) technique. This approach enables the conversion of capillary pressure versus average saturation data into capillary
pressure versus local (outlet) saturation. The RKHS method is applied to both drainage and imbibition centrifuge data, and its efficiency and accuracy are evaluated using both artificially generated and experimental datasets. The results obtained with the RKHS method are compared and validated against other existing methods.

Keywords

Main Subjects


References:
1. Andersen, P. “Capillary pressure effects on estimating the enhanced-oil-recovery potential during low-salinity and smart waterflooding”, SPE J., 25(01), pp. 481–496 (2020). https://doi.org/10.2118/191974-PA
2. Pettersson, K., Maggiolo, D., Sasic, S., et al. “Contribution of dynamic capillary pressure to rainfall infiltration in thin homogeneous growth substrates”, Journal of Hydrology, 603, Part A, 126851 (2021). https://doi.org/10.1016/j.jhydrol.2021.126851
3. Lasseux, D. and Valdés-Parada, F.J. “Upscaled dynamic capillary pressure for two-phase flow in porous media”, Journal of Fluid Mechanics, 959, pp. 1-12 (2023). https://doi.org/10.1017/jfm.2023.135
4. Zankoor, A., Khishvand, M., and Piri, M. “In-situcapillary pressure and its interrelationships with flow characteristics during steady-state three-phase flow in water-wet berea sandstone”, Water Resources Research, 58, e2022WR032976 (2022). https://doi.org/10.1029/2022WR032976
5. Li, Y., Li, H., Chen, Sh., et al. “Investigation of the dynamic capillary pressure during displacement process in fractured tight rocks”, AIChE Journal, 66, e16783 (2020). https://doi.org/10.1002/aic.16783
6. Oktaviany, A.P.P., Pramana, A.A., Farahdibah, U., et al. “Digital core analysis of capillary pressure in sandstone”, Scientific Contributions Oil & Gas, 45, pp. 183 – 191 (2022). https://doi.org/10.29017/SCOG.45.3.1260
7. Lin, Q., Bijeljic, B., Raeini, A. et al. “Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone”, Geophysical Research Letters, 48(14), e2021GL093604 (2021). https://doi.org/10.1029/2021GL093604
8. Xu, W., Huang, H., Ke, Shi-Z., et al. “An integral method for calculation of capillary pressure based on centrifuge data of tight sandstone”, Petroleum Science, 19, pp. 91-99 (2022). https://doi.org/10.1016/j.petsci.2021.10.013
9. Foroughi, S., Bijeljic, B., and Blunt, M.J. “A closedform equation for capillary pressure in porous media for all wettabilities”, Transport in Porous Media, 145, pp. 683-696 (2022). https://doi.org/10.1007/s11242-022-01868-3
10. Bursey, B.J., Mohagheghian, E., Sripal, E., et al.“Prediction of centrifuge capillary pressure usingmachine learning techniques”, E3S Web of Conferences,367, 01004, pp. 1-11 (2023). https://doi.org/10.1051/e3sconf/202336701004
11. Brunner, H. Collocation Methods for Volterra Integraland Related Functional Equations, CambridgeMonographs on Applied and ComputationalMathematics, Cambridge University Press (2004).https://doi.org/10.1017/CBO9780511543234
12. Hermansen, H., Eliassen, O., Guo, Y., et al. “Capillarypressure from centrifuge – A new direct method”,Conference: Second European Core AnalysisSymposium (Eurocas II), London, UK, pp. 453–468(1991).
13. Glotin, J., Genet, J., and Klein, P. “Computation ofdrainage and imbibition capillary pressure curves fromcentrifuge experiments”, SPE-20502-MS, presented atthe SPE Annual Technical Conference and Exhibition,New Orleans, Louisiana, pp. 313-324 (1990). https://doi.org/10.2118/20502-MS
14. Hassler, G.L. and Brunner, E. “Measurements ofcapillary pressure in small core samples”, Trans. AIME,160, pp. 114–123 (1945). https://doi.org/10.2118/945114-G
15. Forbes, P.L. “Centrifuge data analysis techniques: A SCA survey on the calculation of drainage capillarypressure curves from centrifuge measurements”, AReport Published by the Society of Core Analysts, p. 184(1997). DOI:10.1016/j.petrol.2015.10.019
16. Hoffman, R.N. “A technique for the determination ofcapillary pressure curves using a constantly acceleratedcentrifuge”, SPE J., 3, pp.227–235 (1963). https://doi.org/10.2118/555-PA
17. van Domselaar, H.R. “An exact equation to calculateactual saturations from centrifuge capillary pressuremeasurements”, Revista Tecnica Intevep, 4, pp. 55–62(1984). https://doi.org/10.1002/aic.690350304
18. Rajan, R.R. “Theoretically correct analytical solutionfor calculating capillary pressure-saturation fromcentrifuge experiments”, SPWLA-1986-J, Presented atthe SPWLA 27th Annual Logging Symposium, Houston,Texas, pp. 1–17 (1986).
19. Forbes, P.L. “Simple and accurate methods forconverting centrifuge data into drainage and imbibitioncapillary pressure curves”, The Log Analyst, 35, pp. 31–53 (1994).
20. Nazari Moghaddam, R. “A rapid and accurate methodfor calculation of capillary pressure from centrifugedata”, Journal of Petroleum Science and Engineering,135, pp. 577-582 (2015). https://doi.org/10.1016/j.petrol.2015.10.019
21. Subbey, S. and Nordtvedt, J.-E. “Capillary pressurecurves from centrifuge data: A semi-iterative approach”,Computational Geosciences, 6, pp. 207–224 (2002). https://doi.org/10.1023/A:1019943419164
22. Fernø, M.A., Bull, Ø., Sukka, P.O., et al. “Capillarypressures by fluid saturation profile measurementsduring centrifuge rotation”, Transport in Porous Media,80, pp. 253–267 (2009). https://doi.org/10.1007/s11242-009-9355-8
23. Zaremba, S. “Sur le calcul numerique des fonctionsdemandees dans le probleme de Dirichlet et le problemehydrodynamique”, Imprimerie de l'Universite, 70 pages(1909). https://doi.org/10.1016/S0924-6509(09)70281-8
24. Beyrami, H., Lotfi, T., and Mahdiani, K. “Stability anderror analysis of the reproducing kernel Hilbert spacemethod for the solution of weakly singular Volterraintegral equation on graded mesh”, Applied NumericalMathematics, 120, pp. 197–214 (2017). https://doi.org/10.1016/j.apnum.2017.05.010
25. Aronszajn, N. “Theory of reproducing kernels”,Transactions of the American Mathematical Society, 68,pp. 337–404 (1950). https://doi.org/10.2307/1990404
26. Cui, M., and Lin, Y. Nonlinear Numerical Analysis inReproducing Kernel Space, Nova Science Publishers,United States (2009).
27. Karatas Akgül, E. “Reproducing kernel Hilbert spacemethod for nonlinear boundary-value problems”,Mathematical Methods in the Applied Sciences, 41, pp.9142-9151 (2018). https://doi.org/10.1002/mma.5102
28. Foroutan, M., Asadi, R., Ebadian A. “A reproducingkernel Hilbert space method for solving the nonlinearthree-point boundary value problems”, InternationalJournal of Numerical Modelling: Electronic Networks,Devices and Fields, 32, e2573 (2019). https://doi.org/10.1002/jnm.2573
29. Maleknejad, Kh., Hoseingholipour, A. “Numericaltreatment of singular integral equation in unboundeddomain”, International Journal of ComputerMathematics, 98, pp. 1633-1647 (2021). https://doi.org/10.1080/00207160.2020.1845661
30. Micula, S. “A numerical method for weakly singularnonlinear volterra integral equations of the secondkind”, Symmetry, 12, 1862, pp. 1-15 (2020). https://doi.org/10.3390/sym12111862
31. Attia, N., Akgül, A., Seba, D., et al. “Reproducing kernelHilbert space method for solving fractal fractionaldifferential equations”, Results in Physics, 35, 105225(2022). https://doi.org/10.1016/j.rinp.2022.105225
32. Bertsimas, D. and Koduri, N. “Data-driven optimization: A reproducing kernel Hilbert space approach”, Operations Research, 70, pp. 3-8 (2021). https://doi.org/10.1287/opre.2020.2069
33. Tuo, R., He, Sh., Pourhabib, A., et al. “A reproducing kernel Hilbert space approach to functional calibration of computer models”, Journal of the American Statistical Association, 118, pp. 883-897 (2023). https://doi.org/10.48550/arXiv.2107.08288
34. Abbasbandy, S. and Khodabandehlo, H.R. “Application of reproducing kernel Hilbert space method for generalized 1-D linear telegraph equation”, International Journal of Nonlinear Analysis and Applications, 13, pp. 485-497 (2022). https://doi.org/10.22075/ijnaa.2021.20573.2173
35. Pylak, D. and Wójcik, P. “Approximate solution of a dominant singular integral equation with conjugation”, Ukrainian Mathematical Journal, 73, pp. 1495–1504 (2022). https://doi.org/10.1007/s11253-022-02008-2
36. Attia, N. and Akgül, A. “A reproducing kernel Hilbert space method for nonlinear partial differential equations: applications to physical equations”, Physica Scripta, 97, 104001 (2022). https://doi.org/10.1088/1402-4896/ac8958
37. Beyrami, H., Lotfi, T. and Mahdiani, K. “A new efficient method with error analysis for solving the second kind Fredholm integral equation with Cauchy kernel”, Journal of Computational and Applied Mathematics, 300, pp. 385–399 (2016). https://doi.org/10.1016/j.cam.2016.01.011
Volume 32, Issue 9
Transactions on Chemical and Geoenergy Engineering
May and June 2025 Article ID:7866
  • Receive Date: 24 May 2023
  • Revise Date: 30 September 2023
  • Accept Date: 24 October 2023