A new class of robust ratio estimators for finite population variance

Document Type : Research Article

Authors

1 Department of Mathematical Engineering, Faculty of Engineering and Natural Science, Gumushane University, Gumushane 29100, Turkey.

2 Department of Statistics, Faculty of Science, Ondokuz Mayıs University, 55139 Samsun, Turkey.

10.24200/sci.2022.57175.5100

Abstract

It is a general practice to use robust estimates to improve ratio estimators using functions of the parameters of an auxiliary variable. In this study, a new class of robust estimators based upon the Minimum Covariance Determinant (MCD) and the Minimum Volume Ellipsoid (MVE) robust covariance estimates have been suggested for estimating population variance in the presence of outlier values in the data set for the simple random sampling. The expression for the Mean Square Error (MSE) of the proposed class of estimators is derived from the first degree of approximation. The efficiency of the proposed class of robust estimators is compared with some competing estimators discussed in the literature, and found that proposed estimators are better than other mentioned estimators here. In addition, real data set and simulation studies are performed to present the efficiencies of the estimators. We demonstrate theoretically and numerically that the proposed class of estimators performs better than all other competitor estimators under all situations.

Keywords

Main Subjects


References:
1.Kadilar, C., and Cingi, H. “Ratio estimators for thepopulation variance in simple and stratified randomsampling”, Applied Mathematics and Computation, 173(2),pp. 1047-1059 (2006). https://doi.org/10.1016/j.amc.2005.04.032.
2.Khan, M., and Shabbir, J. “A ratio type estimator for theestimation of population variance using quartiles of anauxiliary variable”, Journal of Statistics Applicationsand Probability, 2(3), pp. 319-325, (2013).http://dx.doi.org/10.12785/jsap/020314.
3.Singh, H. P., Pal, S. K., and Solanki, R. S. “A newprocedure for estimation of finite population varianceusing auxiliary information”, Journal of Reliability andStatistical Studies, 7(2), pp. 149-160, (2014).
4.Yadav, S.K., Kadilar, C., Shabbir, J., et al. “Improved family of estimators of population variance in simple randomsampling”, Journal of Statistical Theory and Practice, 9(2),pp. 219-226 (2015). https://doi.org/10.1080/15598608.2013.856359.
5.Yaqub, M., and Shabbir, J. “An improved class ofestimators for finite population variance”, HacettepeJournal of Mathematics and Statistics, 45(5), pp. 1641-1660 (2016). http://dx.doi.org/10.15672/HJMS.20156310746.
6.Singh, H. P., and Pal, S. K. “Estimation of populationvariance using known coefficient of variation of anauxiliary variable in sample surveys”, Journal of Statisticsand Management Systems, 20(1), pp. 91-111, (2017).http://dx.doi.org/10.1080/09720510.2016.1220100.
7.Sanaullah, A., Asghar, A., and Hanif, M. “General classof exponential estimator for estimating finite population variance”, Journal of Reliability and Statistical Studies, 10(2), pp. 1-16 (2017).
8.Muneer, S., Khalil, A., Shabbir, J., et al. “A newimproved ratio-product type exponential estimator offinite population variance using auxiliaryinformation”, Journal of Statistical Computation andSimulation, 88(16), pp. 3179-3192 (2018). https://doi.org/10.1080/00949655.2018.1504947.
9.Housila, P., Singh, Surya, K.P., and Yadav, A. “A studyon the chain ratio-ratio-type exponential estimator forfinite population variance”, Communications inStatistics-Theory and Methods, 47(6), pp.1442-1458(2018).https://doi.org/10.1080/03610926.2017.1321124.
10.Sharma, P., Verma, H.K., Singh, R., and Bouza, C.N.“Estimators for population variance using auxiliaryinformation on quartile”, InvestigationOperational, 39(4), pp. 528-535 (2019).
11.Abid, M., Nazir, H. Z., Riaz, M., Lin, Z., and Tahir, H.M. “Improved ratio estimators using some robustmeasures”, Hacettepe Journal of Mathematics andStatistics, 47(5), pp. 1375-1393 (2018). https://doi.org/10.15672/HJMS.2017.442.
12.Abid, M., Ahmed, S., Tahir, M., et al. “Improved ratioestimators of variance based on robust measures”,Scientia Iranica, 26(4), pp. 2484-2494 (2019).https://doi.org/10.24200/sci.2018.20604.
13.Naz, F., Abid, M., Nawaz, T., et al. “Enhancing theefficiency of the ratio-type estimators of populationvariance with a blend of information on robust locationmeasures”, Scientia Iranica, 27(4), pp. 2040-2056(2019). https://doi.org/10.24200/sci.2019.5633.1385.
14.Zaman, T. and Bulut, H. “Modified regression estimators using robust regression methods and covariancematrices in stratified random sampling”,Communications in Statistics-Theory and Methods,49(14), pp. 3407-3420 (2020). https://doi.org/10.1080/03610926.2019.1588324.
15.Bulut, H. and Zaman, T. “An improved class of robust ratio estimators by using the minimum covariance determinantestimation”, Communications in Statistics-Simulation andComputation, 51(5), pp. 2457-2463 (2022).https://doi.org/10.1080/03610918.2019.1697818.
16.Zaman, T. and Bulut, H. “An efficient family of robust-type estimators for the population variance in simple andstratified random sampling”, Communications in Statistics-Theory and Methods, 52(8), pp. 2610-2624 (2023).https://doi.org/10.1080/03610926.2021.1955388.
17.Zaman, T., Dünder, E., Audu, A., Alilah, D. A., Shahzad,U., and Hanif, M. “Robust regression-ratio-type estimatorsstudy”, Mathematical Problems in Engineering, 2021, pp. 1-9 (2021). https://doi.org/10.1155/2021/6383927.
18.Grover, L.K. and Kaur, A. “An improved regression type estimator of population mean with two auxiliaryvariables and its variant using robust regressionmethod”, Journal of Computational and AppliedMathematics, 382, pp. 1-18 (2021). https://doi.org/10.1016/j.cam.2020.113072.
19.Zaman, T. and Bulut, H. “A simulation study: Robustratio double sampling estimator of finite populationmean in the presence of outliers”, Scientia Iranica,31(15), pp. 1330-1341 (2024).https://doi.org/10.24200/sci.2021.55813.4418.
20.Isaki, C. T. “Variance estimation using auxiliaryinformation”, Journal of the American StatisticalAssociation, 78, pp. 117-123 (1983).https://doi.org/10.1080/01621459.1983.10477939.
21.Singh, H.P., Pal, S.K., and Yadav, A. “A study on thechain ratio-ratio-type exponential estimator for finitepopulation variance”, Communications in Statistics-Theory and Methods, 47(6), pp. 1442-1458 (2018).https://doi.org/10.1080/03610926.2017.1321124.
22.Upadhyaya, L. N., and Singh, H. P. “An estimator forpopulation variance that utilizes the kurtosis of anauxiliary variable in sample surveys”, VikramMathematical Journal, 19(1), pp. 14-17 (1999).
23.Bulut, H., Multivariate Statistical Methods with RApplications, Nobel, Ankara (2018).
24.Venables, W.N. and Ripley, B.D. Modern Applied Statisticswith S, Fourth Edition, Springer, New York (2002).
25.Singh, R. and Malik, S. “Improved estimation ofpopulation variance using information on auxiliaryattribute in simple random sampling”, AppliedMathematics and Computation, 235, pp. 43-49 (2014). https://doi.org/10.1016/j.amc.2014.03.002.
26.Zaman, T., and Bulut, H. “Modified ratio estimatorsusing robust regression methods”, Communications inStatistics-Theory and Methods, 48(8), pp.2039-2048,(2019).https://doi.org/10.1080/03610926.2018.1441419.
27.Zaman, T., Sağlam, V., Sağır, M., Yücesoy, E., and Zobu,M. “Investigation of some estimators via taylor seriesapproach and an application”, American Journal ofTheoretical and Applied Statistics, 3(5), pp. 141-147(2014). https://doi.org/10.11648/j.ajtas.20140305.14.
Volume 32, Issue 8
Transactions on Industrial Engineering (E)
March and April 2025 Article ID:5100
  • Receive Date: 15 November 2020
  • Revise Date: 12 October 2021
  • Accept Date: 03 January 2022