A variable sampling interval multivariate exponentially weighted moving average control chart for monitoring the gumbel's bivariate exponential data

Document Type : Research Article

Authors

1 School of Automation, Nanjing University of Science and Technology, Nanjing, China.

2 School of Management and Institute of High-Quality Development Evaluation, Nanjing University of Posts and Telecommunications, Nanjing, China.

10.24200/sci.2022.56544.4780

Abstract

The general assumption in designing a multivariate control chart is that the multiple variables are independent and  normally distributed. This assumption may not be tenable in many practical situations, because multiple variables with dependency often need to be monitored simultaneously to ensure the process is in control. The Gumbel's Bivariate
Exponential (GBE) distribution is considered to be a better model for skewed data with dependency in reliability analysis. In this paper, a Multivariate Exponentially Weighted Moving Average (MEWMA) scheme with Variable Sampling Interval (VSI) feature is developed to monitor the mean vector of GBE model. The Monte Carlo simulation is used to evaluate the Average Time to Signal (ATS) performance of the proposed VSI MEWMA GBE scheme for three di erent types of shifts. Some tables are presented to show the ATS performance of the proposed scheme with different designed parameters.
Additionally, both the zero-state and the steady-state ATS performance of the proposed scheme is compared with that of the conventional MEWMA chart with FSI (Fix Sampling Interval) feature. Comparative results show that the suggested scheme works better than its FSI counterpart in monitoring GBE data. Finally, a simulation example is provided to show that the VSI MEWMA GBE scheme performs well in monitoring GBE data.

Keywords

Main Subjects


References:
1. Perry, M.B. "An EWMA control chart for categorical processes with applications to social network monitoring", Journal of Quality Technology, 52(2), pp. 182- 197 (2020). https://doi.org/10.1080/00224065.2019.1571343.
2. Hassani, Z., Amiri, A., and Castagliola, P. "Variable sample size of exponentially weighted moving average chart with measurement errors", Scientia Iranica, 28(4), pp. 2386-2399 (2021). https://doi.org/10.24200/sci.2019.52722.2856.
3. Khan, Z., Gulistan, M., Hashim, R., et al. "Design of S-control chart for neutrosophic data: An application to manufacturing industry", Journal of Intelligent and Fuzzy Systems, 38(4), pp. 4743-4751 (2020). https://doi.org/10.3233/JIFS-191439.
4. Nazir, H. Z., Abid, M., Akhtar, N., et al. "An efficient mixed-memory-type control chart for normal and nonnormal processes", Scientia Iranica, 28(3), pp. 1736- 1749 (2021). https://doi.org/10.24200/sci.2019.51437.2177.
5. Castagliola, P., Tran, K.P., Celano, G., et al. "An EWMA-type sign chart with exact run length properties", Journal of Quality Technology, 51(1), pp. 51-63 (2019). https://doi.org/10.1080/00224065.2018.1545497.
6. Ajadi, J.O. and Riaz, M. "New memory-type control charts for monitoring process mean and dispersion", Scientia Iranica, 24(6), pp. 3423-3438 (2017). https://doi.org/10.24200/sci.2017.4483.
7. Cozzucoli, P.C. and Marozzi, M. "Monitoring multivariate Poisson processes: A review and some new results", Quality Technology and Quantitative Management, 15(1), pp. 53-68 (2018). https://doi.org/10.1080/16843703.2017.1304035.
8. Xie, Y., Xie, M., and Goh, T.N. "Two MEWMA charts for Gumbel's bivariate exponential distribution", Journal of Quality Technology, 43(1), pp. 50-65 (2011). https://doi.org/10.1080/00224065.2011.11917845.
9. Montgomery, D.C., Introduction to Statistical Quality Control, 7th Ed., John Wiley and Sons, New York (2012). 
10. Lowry, C.A., Woodall, W.H., Champ, C.W., et al. "A multivariate exponentially weighted moving average control chart", Technometrics, 34(1), pp. 46-53 (1992). https://doi.org/10.1080/00401706.1992.10485232.
11. Crosier, R.B. "Multivariate generalizations of cumulative sum quality-control schemes", Technometrics, 30(3), pp. 291-303 (1988). https://doi.org/10.1080/00401706.1988.10488402.
12. Lowry, C.A. and Montgomery, D.C. "A review of multivariate control charts", IIE Transactions, 27(66), pp. 800-810 (1995). https://doi.org/10.1080/07408179508936797.
13. Bersimis, S., Psarakis, S., and Panaretos, J. "Multivariate statistical process control charts: an overview", Quality and Reliability Engineering International, 23(5), pp. 517-543 (2007). https://doi.org/10.1002/qre.829.
14. Chen, N., Li, Z., and Ou, Y. "Multivariate exponentially weighted moving-average chart for monitoring Poisson observations", Journal of Quality Technology, 47(3), pp. 252-263 (2015). https://doi.org/10.1080/00224065.2015.11918131.
15. Cheng, Y., Mukherjee, A., and Xie, M. "Simultaneously monitoring frequency and magnitude of events based on bivariate gamma distribution", Journal of Statistical Computation and Simulation, 87(9), pp. 1723-1741 (2017). https://doi.org/10.1080/00949655.2017.1284846.
16. Chang, Y.S. "Multivariate CUSUM and EWMA control charts for skewed populations using weighted standard deviations", Communications in Statistics- Simulation and Computation, 36(4), pp. 921-936 (2007). https://doi.org/10.1080/03610910701419596.
17. Stoumbos, Z.G. and Sullivan, J.H. "Robustness to nonnormality of the multivariate EWMA control chart", Journal of Quality Technology, 34(3), pp. 260-276 (2002). https://doi.org/10.1080/00224065.2002.11980157.
18. Testik, M.C., Runger, G.C., and Borror, C.M. "Robustness properties of multivariate EWMA control charts", Quality and Reliability Engineering International, 19(1), pp. 31-38 (2003). https://doi.org/10.1002/qre.498.
19. Tang, A., Castagliola, P., Sun, J., et al. "An adaptive exponentially weighted moving average chart for the mean with variable sampling intervals", Quality and Reliability Engineering International, 33(8), pp. 2023- 2034 (2017). https://doi.org/10.1002/qre.2164.
20. Reynolds, M.R., Amin, R.W., Arnold, J.C., et al. "Charts with variable sampling intervals", Technometrics, 30(2), pp. 181-192 (1988). https://doi.org/doi:10.1080/00401706.1988.10488366.
21. Reynolds Jr, M.R. "Optimal variable sampling interval control charts", Sequential Analysis, 8(4), pp. 361-379 (1989). https://doi.org/10.1080/07474948908836187.
22. Reynolds Jr, M.R. and Arnold, J.C. "EWMA control charts with variable sample sizes and variable sampling intervals", IIE Transactions, 33(6), pp. 511-530 (2001).https://doi.org/10.1080/07408170108936850.
23. Haq, A. "Weighted adaptive multivariate CUSUM charts with variable sampling intervals", Journal of Statistical Computation and Simulation, 89(3), pp. 478-491 (2019). https://doi.org/10.1080/00949655.2018.1555252.
24. Khoo, M.B.C., Saha, S., Lee, H.C., et al. "Variable sampling interval exponentially weighted moving average median chart with estimated process parameters", Quality and Reliability Engineering International, 35(8), pp. 2732-2748 (2019). https://doi.org/10.1002/qre.2554.
25. Shojaee, M., Jafarian Namin, S., Fatemi Ghomi, S., et al. "Applying SVSSI sampling scheme on npchart to Decrease the Time of Detecting Shifts-Markov chain approach, and Monte Carlo simulation", Scientia Iranica, 29(6), pp. 3369-3387 (2022). https://doi.org/10.24200/sci.2020.52677.2833.
26. Li, Z., Zou, C., Gong, Z., et al. "The computation of average run length and average time to signal: an overview", Journal of Statistical Computation and Simulation, 84(8), pp. 1779-1802 (2014). https://doi.org/10.1080/00949655.2013.766737.
27. Saccucci, M.S., Amin, R.W., and Lucas, J.M. "Exponentially weighted moving average control schemes with variable sampling intervals", Communications in Statistics-Simulation and Computation, 21(3), pp. 627-657 (1992). https://doi.org/10.1080/03610919208813040.
28. Chew, X.Y., Khoo, M.B.C., Teh, S.Y., et al. "The variable sampling interval run sum X/ control chart", Computers and Industrial Engineering, 90, pp. 25-38 (2015). https://doi.org/10.1016/j.cie.2015.08.015.
29. Lee, M.H. and Khoo, M.B.C. "Design of a multivariate exponentially weighted moving average control chart with variable sampling intervals", Computational Statistics, 29(1-2), pp. 189-214 (2014). https://doi.org/10.1007/s00180-013-0443-4.
30. Lee, M.H. "Multivariate EWMA charts with variable sampling intervals", Stochastics and Quality Control, 24(2), pp. 231-241 (2009). https://doi.org/10.1515/EQC.2009.231.
31. Gumbel, E.J. "Bivariate exponential distributions", Journal of the American Statistical Association, 55(292), pp. 698-707 (1960). https://doi.org/10.1080/01621459.1960.10483368.
32. Nadarajah, S. and Kotz, S. "Reliability for some bivariate exponential distributions", Mathematical Problems in Engineering, 2006, pp. 1-14 (2006). https://doi.org/10.1155/MPE/2006/41652.
33. Lu, J.C. and Bhattacharyya, G.K. "Inference procedures for a bivariate exponential model of Gumbel based on life test of component and system", Journal of Statistical Planning and Inference, 27(3), pp. 383-396 (1991). https:// doi.org/10.1016/0378-3758(91)90051-F.
34. Hougaard, P. "Fitting a multivariate failure time distribution", IEEE Transactions on Reliability, 38(4), pp. 444-448 (1989). https://doi.org/10.1109/24.46460.
35. Bacchi, B., Becciu, G., and Kottegoda, N.T. "Bivariate exponential model applied to intensities and durations of extreme rainfall", Journal of Hydrology, 155(1-2), pp. 225-236 (1994). https://doi.org/10.1016/0022-1694(94)90166-X.
36. Pal, S. and Murthy, G. "An application of Gumbel's bivariate exponential distribution in estimation of warranty cost of motor cycles", International Journal of Quality and Reliability Management, 20(4), pp. 488- 502 (2003). https://doi.org/10.1108/02656710310468650.
37. Hougaard, P. "Modelling multivariate survival", Scandinavian Journal of Statistics, 14, pp. 291-304 (1987). URL:https://www.jstor.org/stable/4616072.
38. Lu, J.C. and Bhattacharyya, G.K. "Inference procedures for bivariate exponential model of Gumbel", Statistics and Probability Letters, 12(1), pp. 37-50 (1991). https://doi.org/10.1016/0167-7152(91)90162- K.
39. Reynolds, M.R., Amin, R.W., and Arnold, J.C. "CUSUM charts with variable sampling intervals", Technometrics, 32(4), pp. 371-384 (1990). https://doi.org/10.1080/00401706.1990.10484721.
40. Castagliola, P., Celano, G., and Fichera, S. "Evaluation of the statistical performance of a variable sampling interval R EWMA control chart," Quality Technology and Quantitative Management, 3(3), pp. 307-323 (2006). https://doi.org/10.1080/16843703.2006.11673117.
41. Lee, M.H. and Khoo, M.B. "Combined double sampling and variable sampling interval np chart", Communications in Statistics-Theory and Methods, 46(23), pp. 11892-11917 (2017). https://doi.org/10.1080/03610926.2017.1285924.
42. Guo, B. and Wang, B.X. "The variable sampling interval S2 chart with known or unknown incontrol variance", International Journal of Production Research, 54(11), pp. 3365-3379 (2016). https://doi.org/10.1080/00207543.2015.1109720.
43. Xie, F., Sun, J., Castagliola, P., et al. "A multivariate CUSUM control chart for monitoring Gumbel's bivariate exponential data", Quality and Reliability Engineering International, 37(1), pp. 10-33 (2021). https://doi.org/10.1002/qre.2717.
44. Xu, S. and Jeske, D.R. "Weighted EWMA charts for monitoring type I censored Weibull lifetimes", Journal of Quality Technology, 50(2), pp. 220-230 (2018). https://doi.org/10.1080/00224065.2018.1436830.
45. Wu, Z., Jiao, J., and He, Z. "A control scheme for monitoring the frequency and magnitude of an event", International Journal of Production Research, 47(11), pp. 2887-2902 (2009). https://doi.org/10.1080/00207540701689743. 
Volume 32, Issue 8
Transactions on Industrial Engineering
March and April 2025 Article ID:4780
  • Receive Date: 04 August 2020
  • Revise Date: 29 October 2021
  • Accept Date: 03 January 2022