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Abstract. The general assumption in designing a multivariate control chart is that the
multiple variables are independent and normally distributed. This assumption may not be
tenable in many practical situations, because multiple variables with dependency often need
to be monitored simultaneously to ensure the process is in control. The Gumbel's Bivariate
Exponential (GBE) distribution is considered to be a better model for skewed data with
dependency in reliability analysis. In this paper, a Multivariate Exponentially Weighted
Moving Average (MEWMA) scheme with Variable Sampling Interval (VSI) feature is
developed to monitor the mean vector of GBE model. The Monte Carlo simulation is
used to evaluate the Average Time to Signal (ATS) performance of the proposed VSI
MEWMA GBE scheme for three di�erent types of shifts. Some tables are presented to
show the ATS performance of the proposed scheme with di�erent designed parameters.
Additionally, both the zero-state and the steady-state ATS performance of the proposed
scheme is compared with that of the conventional MEWMA chart with FSI (Fix Sampling
Interval) feature. Comparative results show that the suggested scheme works better than
its FSI counterpart in monitoring GBE data. Finally, a simulation example is provided to
show that the VSI MEWMA GBE scheme performs well in monitoring GBE data.

1. Introduction

Quality control plays a signi�cant role in maintain-
ing the reputation of a factory or company. The
most e�ective way to improve product quality in the
manufacturing processes is to use Statistical Process
Control (SPC). As one of the most important tools in
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SPC, control charts have been widely used in many
quality control applications and developed with many
variants, for example, Perry [1], Hassani et al. [2] and
Khan et al. [3]. It is known that univariate control
charts can only focus on a single quality characteristic
of the process, for instance, the univariate Shewhart-
type control charts are popular and e�cient to detect
large changes in a process, and the univariate memory-
type control charts, for example, the Exponentially
Weighted Moving Average (EWMA) chart and the

To cite this article:
F.-P. Xie, X.-L. Hu, Y.-L. Qiao and J.-S. Sun \A variable sampling interval multivariate exponentially weighted moving average
control chart for monitoring the Gumbel's bivariate exponential data", Scientia Iranica, (2025) 32(8): 4780
https://doi.org/10.24200/sci.2022.56544.4780

2345-3605© 2025 Sharif University of Technology. This is an open access article under the CC BY-NC-ND license

Scientia Iranica (2025) 32(8): 4780



2

Cumulative SUM (CUSUM) chart are much more
e�ective for detecting small to moderate shifts [4-6].
However, in practice, there are many scenarios in which
the simultaneous monitoring of several related quality
characteristics of interest is a necessity. According to
Cozzucoli and Marozzi [7] and Xie et al. [8], it is
usually ine�ective and misleading when several univari-
ate schemes are used to monitor these related quality
characteristics separately. In this context, the use of
a multivariate control chart can be a good solution to
the problem as it takes the natural correlation between
the quality characteristics into account [9]. Most of the
traditional multivariate control charts are the general-
izations of their univariate counterparts, such as the
Multivariate Exponentially Weighted Moving Average
(MEWMA) control chart proposed by Lowry et al.
[10] and the Multivariate CUSUM (MCUSUM) control
chart introduced by Crosier [11]. For more details
on traditional multivariate control charts, readers can
refer to Lowry and Montgomery [12] and Bersimis et
al. [13].

Although multivariate control charts have re-
ceived much attention in the literature, most of the
works were based on the assumption that the data
follow a multivariate normal distribution. But in
practice, the multivariate data in many situations are
usually non-normal and highly skewed, as the marginal
distributions are usually based on exponential, Poisson
or gamma distributions [8,14,15]. Up to now, there
are many approaches have been proposed to construct
multivariate control charts for those non-normal and
highly skewed distributions, for instance, the double
square-root transformation used in Xie et al. [8],
and the weighted standard deviation method proposed
by Chang [16]. Di�erent from these transformation
methods, both Stoumbos and Sullivan [17] and Testik
et al. [18] pointed out that the MEWMA scheme
using a small smoothing factor was fairly robust to
the non-normality assumption. In this context, Xie
et al. [8] investigated the Average Run Length (ARL)
performance of the MEWMA scheme in detecting the
mean shift vector of Gumbel's Bivariate Exponential
(GBE) distribution. Cheng et al. [15] further studied
the ARL performance of the MEWMA scheme for si-
multaneously monitoring the frequency and magnitude
of events. The results of these two studies implied that
the MEWMA scheme with a small smoothing factor
outperformsthe other competing charts for monitoring
the multivariate non-normal data in most scenarios.

The traditional practice of using a control chart
for process monitoring is to take a �xed sample size
from the process at a Fixed Sampling Interval (FSI).
Extensive research works have been shown that varying
the sampling interval as a function of the process
sample can make the process shift detection faster
than the corresponding FSI strategy [19]. In addition,

simulations in Reynolds Jr. et al. [20-22], showed that
using two sampling intervals is su�cient to provide
good performance in monitoring various magnitudes
of shifts, and to keep the complexity of the Variable
Sampling Interval (VSI) charts at a reasonable level. It
is known that the VSI charts can usually be partitioned
into three regions, namely, the safe region, the warning
region and the out-of-control region. The basic idea of
the VSI charts is that the short sampling interval dS
can provide a quick detection when the current sample
falls into the warning region, and a long sampling
interval dL is taken if the current sample falls into the
safe region. Finally, if a sample falls outside the control
limits, the sample belongs to the out-of-control region
and the process is considered to be out-of-control,
where corrective action(s) should be taken to remove
the assignable cause(s). Some of the recent studies on
VSI charts were made by Haq [23], Khoo et al. [24]
and Shojaee et al. [25].

The time to signal of a scheme is not a constant
multiple of its ARL when the sampling interval is
varied. Hence, the Average Time to Signal (ATS),
which is de�ned as the average time from the beginning
of the process monitoring until the scheme generates
an out-of-control signal, is often employed in VSI
type charts [26]. As de�ned in Saccucci et al. [27]
and Chew et al. [28], if a shift in the parameter
occurs at the beginning of the Phase II monitoring,
the corresponding ATS is referred to as the zero-state
ATS. Similarly, for the steady-state case, a meanshift
is assumed to occur at an unknown random time after
process monitoring has started, and the corresponding
ATS can be referred to as the Adjusted ATS (AATS) or
the Steady� state ATS (SATS) (see Haq [23]). In this
paper, both the zero-state and the SATS performance
is investigated to provide a comprehensive analysis of
the GBE data monitoring.

According to Lee et al. [29,30], the VSI fea-
ture can substantially improve the ATS properties of
MEWMA scheme, this fact motivates us to study
the e�ectiveness of the VSI feature on the MEWMA
scheme in monitoring GBE data. Although monitoring
the GBE data with a MEWMA scheme has already
been developed by Xie et al. [8], there is still no
research has been done on (1) proposing a MEWMA
type scheme with VSI feature for monitoring the GBE
data (hereafter denoted as the VSI MEWMA GBE
scheme), and (2) evaluating both the zero-state and
the steady-state ATS performance of the proposed VSI
MEWMA GBE scheme for a direct comparison with
its FSI counterpart. We address these research gaps in
the current paper.

The outline of this study is organized as follows:
In Section 2, the GBE model is �rst introduced, and
then a VSI MEWMA type scheme for monitoring the
GBE distributed data is developed. The Monte Carlo
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simulations for both the zero-state and the steady-state
ATS computations of the proposed scheme are detailed
in Section 3. Subsequently, in Section 4, numerical
comparisons are performed between the proposed VSI
MEWMA GBE scheme and its FSI counterpart in the
case of downward, upward and hybrid shifts. Also,
several guidelines for constructing the VSI MEWMA
GBE scheme are o�ered. In Section 5, a simulation
example is provided to illustrate the implementation
of the proposed VSI MEWMA GBE scheme for mon-
itoring the GBE data. Finally, some conclusions are
made in Section 6.

2. The VSI MEWMA scheme for GBE
distributed data

2.1. GBE model
The GBE model, which is known as the GBE model,
was �rstly introduced by Gumbel [31]. Let us assume
that the random variables (X;Y ) used in this paper
follows a standard GBE distribution. The joint survival
function �FX;Y (x; y) of X and Y is given as:

�FX;Y (x; y) =exp
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According to Nadarajah and Kotz [32], the GBE
models have been extensively used in various appli-
cations, for instance, competing risks modeling [33],
failure times [34], regional analyses of precipitation [35],
reliability or frailty modelling [36]. However, only a
few studies have been conducted on the multivariate
control charts to monitor the GBE distributed data
due to its complexity. More importantly, the GBE

model is a meaningful multivariate reliability model
that the dependence can be explained by the random
mixing e�ect of external stress [37]. This makes it
easier to be applied in realistic situations than other
multivariate reliability models where the source of
dependence needs to be speci�ed, for example, the
Marshall-Olkin's model and the Freund's model. All
these factors motivate us to conduct further research
on the monitoring of GBE data.

The mean vector and the corresponding covari-
ance matrix are usually required in developing a multi-
variate control chart. From the joint survival function
�FX;Y (x; y) in Eq. (1), it is easy to prove that the
marginal distributions of X and Y are, respectively,
the exponential distributions of parameters �x and �y.
Based on this condition, the mean vector � of (X;Y )|
is given as:

� =
�
�x
�y

�
; (3)

and the corresponding covariance matrix � is de�ned
as:

� =
�

�2
x ��x�y

��y�x �2
y

�
; (4)

where the coe�cient of correlation � is [38]:

� =
2�2(� + 1)
�(2� + 1)

� 1: (5)

Note that �(�) is the gamma function. For more details
about the properties of GBE model, readers can refer
to Lu and Bhattacharyya [33,38].

2.2. The proposed VSI MEWMA GBE scheme
The standard MEWMA scheme was �rstly developed
by Lowry et al. [10]. Similar to the univariate EMWA
control charts, MEWMA schemes also take both the
current and the past samples information of the process
into account, which makes the schemes more e�ective in
detecting small to moderate shifts. Furthermore, based
on the fact that the MEWMA scheme with a small
smoothing parameter was considered to be fairly robust
to the non-normality assumption, the VSI MEWMA
GBE scheme recommended in this study is robust to
the GBE distributed data.

For the proposed VSI MEWMA GBE scheme,
suppose that the vectors Mt = (Xt; Yt)|, t = 1; 2; : : :
are the GBE vectors collected at regular sampling
points. Similar to Lowry et al. [10], the MEWMA
statistic Wt of the recommended scheme can be written
as:

Wt = R(Mt � �0) + (I�R)Wt�1; (6)

where �0 = (�x; �y)| is the in-control mean vector, I
is the (2; 2) identity matrix, the process initial statistic

F.-P. Xie et al./Scientia Iranica (2025) 32(8): 4780



4

W0 = 0, and R =diag(r1; r2), where ri 2 (0; 1] for
i = 1; 2. Furthermore, the charting statistic Q2

t of the
proposed VSI MEWMA GBE scheme is de�ned as:

Q2
t = W|

t �
�1
Wt

Wt; (7)

where �Wt is the in-control covariance matrix of the
MEWMA statistic Wt. In general, when r1 = r2 = r,
the MEWMA statistic Wt is re-stated as:

Wt = r(Mt � �0) + (1� r)Wt�1: (8)

Since the asymptotic in-control covariance matrix �Wt

is:

�Wt =
�

r
2� r

�
�; (9)

where � is de�ned in Eq. (4). The charting statistic
Q2
t can be written as follows:

Q2
t =

2� r
r

W|
t �
�1Wt: (10)

For the proposed VSI MEWMA GBE scheme, the
safety region, the warning region, and the out-of-
control region are divided by the upper control limit
HU and the warning control limit HW . Furthermore,
the VSI strategy of the scheme is given as follows:

� If Q2
t 2 [0; HW ], i.e., the current sample belongs to

the safety region, the process is considered as in-
control, and the next sample is taken after a long
sampling interval dL > 1;

� Otherwise, if Q2
t 2 (HW ;HU ], the current sample

belongs to the warning region, the process is also
considered as in-control, but a short sampling inter-
val dS 2 (0; 1) is used for the next sample;

� Finally, if Q2
t 2 (HU ;+1), the current sample

belongs to the out-of-control region, the process
is deemed to be out-of-control, the proposed VSI
MEWMA GBE scheme signals and corresponding
corrective action(s) should be taken to remove the
assignable cause(s).

3. ATS of the VSI MEWMA GBE scheme

For the VSI type schemes, it is necessary to directly
measure the time required to signal. According to [19],
the ATS of the FSI type scheme is just a multiple of
its ARL. Without loss of generality, we have:

ATSFSI = ARLFSI � dFSI ; (11)

where dFSI represents the �xed sampling interval used
in the FSI type scheme. But the ATS of the VSI
type scheme depends on both the ARL value and the
predetermined sampling intervals, say:

ATSV SI = ARLV SI � E(d); (12)

where E(d) represents the Average of Sampling Inter-
vals (ASI). As shown in Reynolds et al. [39], Saccucci
et al. [27], Castagliola et al. [40], and Tang et al. [19],
the ASI is usually taken to be E(d) = 1 time unit.

In this study, the same in-control ATS value is
used to provide a fair comparison between the VSI
MEWMA GBE scheme and its FSI counterpart. Based
on this assumption, we have:

E(d) = pS � dS + pL � dL = dFSI = 1; (13)

where pS+pL = 1, and pS (pL) represents the probabil-
ity of adopting the short (long) sampling interval. It is
easy to see that Eq. (13) can keep the in-control ARL
(hereafter denoted as ARL0) and the in-control ATS
(hereafter denoted as ATS0) of the scheme at the same
value (i.e., ATSFSI0 = ATSV SI0 = ARL0). With an
acceptable ATS0, the smaller the out-of-control ATS
(hereafter denoted as ATS1), the better the perfor-
mance of the control chart. In this paper, the in-control
and out-of-control GBE processes are, respectively,
modeled by GBE(�x; �y; �) and GBE(�0x; �0y; �). In
what follows, both the zero-state and the steady-state
ATS performance of the suggested VSI MEWMA GBE
scheme is studied.

3.1. Zero-state case
The zero-state ATS is de�ned as the ATS when the
process operates with the mean o� target from the
start [41]. As recommended by Chen et al. [14],
Tang et al. [19], and Guo and Wang [42], the short
sampling interval dS should be used in the proposed
VSI MEWMA GBE scheme as a safeguard to provide
additional protection against problems that may occur
during the start-up start-up (i.e., d0 = dS , where d0
is the sampling interval used before the �rst sample is
taken). The Monte Carlo simulation for computing the
zero-state ATS value of the VSI MEWMA GBE scheme
is given as follows:

Step 1. Specify the scale parameters �x and �y,
the smoothing parameter r, and the dependence
parameter �. Meanwhile, determine the upper
control limit HU and the warning control limit HW
of the suggested VSI MEWMA GBE scheme. Set
the cumulative number of short sampling interval
NS = 1 (i.e., d0 = dS) and the cumulative number
of long sampling interval NL = 0. In addition, let
the initial sampling point t = 1.
Step 2. Generate an out-of-control GBE vector
MOC

t = (Xt; Yt)| of the GBE (�01; �02; �) model at
sampling point t using the following equations [43]:

E = E1 + V E2; (14)

Xt = �xU �E; (15)

Yt = �y(1� U)�E; (16)
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Table 1. Both HU and HW values of the suggested VSI MEWMA GBE scheme in the zero-state case, for ATS0 = 200,
� = 0:5, r 2 f0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1g, dS 2 f0:1; 0:3; 0:5g, and pS 2 f0:2; 0:5; 0:8g.

r

pS (dS , dL)
0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(0.1,1.225) HW 1.64 2.11 2.62 2.67 2.656 2.73 2.58 2.334 2.27 2.11 2.01 2.04 1.95 1.946
(0.3,1.175) HW 1.649 2.13 2.55 2.637 2.656 2.705 2.561 2.316 2.253 2.07 2.01 2.01 1.94 1.924
(0.5,1.125) HW 1.647 2.129 2.533 2.637 2.629 2.705 2.561 2.325 2.24 2.04 2.01 2.009 1.94 1.924

(0.1,1.9) HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
0.5 (0.3,1.7) HW 0.71 0.93 1.13 1.17 1.17 1.18 1.12 1.06 0.984 0.93 0.88 0.84 0.814 0.801

(0.5,1.5) HW 0.72 0.94 1.13 1.17 1.156 1.18 1.13 1.06 0.99 0.94 0.89 0.84 0.81 0.798

(0.1,4.6) HW 0.214 0.288 0.36 0.377 0.387 0.394 0.389 0.376 0.365 0.352 0.344 0.34 0.339 0.346
(0.3,3.8) HW 0.214 0.288 0.36 0.377 0.387 0.394 0.387 0.376 0.363 0.353 0.347 0.345 0.344 0.344
(0.5,3.0) HW 0.214 0.292 0.36 0.377 0.387 0.394 0.387 0.376 0.363 0.352 0.344 0.345 0.344 0.348

where U , V , E1, and E2 are four independent ran-
dom variables such that U is a uniform (0; 1) random
variable, V 2 f0; 1g is a Bernoulli random variable
with parameter � (the dependence parameter of the
GBE model), say, P (V = 0) = 1 � � and P (V =
1) = �, and E1 and E2 are two exponential random
variables both with scale parameter �E = 1.

Step 3. Compute the charting statistic Q2
t at

sampling point t using Eq. (10). Then,

� If Q2
t 2 [0;HW ], the process is considered as in-

control, let t = t + 1, and then move to Step
2 to generate a new MOC

t after a long sampling
interval dL (i.e., NL = NL + 1);

� If Q2
t 2 (HW ;HU ], the process is also considered

as in-control, let t = t + 1, and then go to Step
2 to obtain a new MOC

t after a short sampling
interval dS (i.e., NS = NS + 1);

� Otherwise, if Q2
t > HU , the process is deemed to

be out-of-control, the TS (Time to Signal) value
can be calculated using TS = dL�NL+dS�NS .
Reset t = 1, NS = 1, and NL = 0, and then move
to the next step.

Step 4. Repeat Steps 2 and 3 to obtain 105 TS
values, and then the zero-state ATS of the proposed
VSI MEWMA GBE scheme is estimated.

Furthermore, with the constraint on the desired
ATS0, a two-stage procedure for searching the upper
control limit HU and the warning control limit HW of
the suggested VSI MEWMA GBE scheme is given as
follows:

Step 1. Choose an acceptable in-control ATS
value, say, ATS0 = A, and specify the smoothing

parameter r, the short (long) sampling interval dS
(dL), and the probability pS (pL) of adopting the
short (long) sampling interval.
Step 2. With the constraint on ARL0 =
ATS0=E(d) = A, search the upper control limit HU
of the recommended scheme �rst.
Step 3. Based on the speci�ed dS and pS (or, dL
and pL), the corresponding long (short) sampling
interval dL (dS ) can be computed using Eq. (13).
For instance, if dS = 0:1 and pS = 0:4, it is easy to
known that pL = 1� pS = 0:6 and dL = 1:6.
Step 4. For each combination of (dS ; dL), the
warning control limit HW will then be determined
by the �xed upper control limit HU and ATS0 = A.

According to the two-stage procedure introduced
above, when � = 0:5, r 2 f0:01, 0.02, 0.05, 0.07,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1g, dS 2f0:1; 0:3; 0:5g, and pS 2 f0:2; 0:5; 0:8g, the HU and
HW values of the proposed VSI MEWMA GBE scheme
leading to the desired ATS0 = 200 are presented in
Table 1.

3.2. Steady-state case
The steady-state case is commonly based on a more
realistic assumption that some random shifts occur
after a period of in-control time, the ATS obtained
in this scenario is named the steady-state ATS [29].
The Monte Carlo simulation for computing steady-
state ATS is similar to the zero-state ATS case, ex-
cept that the in-control \warm-up period" should be
implemented �rst [44]. The steps are given as:

Step 1. Take the scale parameters �x and �y,
the smoothing parameter r, and the dependence
parameter �. Meanwhile, determine the upper

F.-P. Xie et al./Scientia Iranica (2025) 32(8): 4780
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Table 2. Both HU and HW values of the suggested VSI MEWMA GBE scheme in the steady-state case, for ATS0 = 200,
� = 0:5, r 2 f0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1g , dS 2 f0:1; 0:3; 0:5g, pS 2 f0:2; 0:5; 0:8g, and
Tw = 50.

r

pS (dS , dL)
0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54
(0.1,1.225) HW 1.551 1.96 2.45 2.55 2.65 2.56 2.45 2.28 2.17 2.03 1.91 1.80 1.785 1.77
(0.3,1.175) HW 1.611 1.96 2.48 2.58 2.65 2.56 2.45 2.28 2.20 2.03 1.91 1.83 1.865 1.77
(0.5,1.125) HW 1.641 1.99 2.51 2.58 2.65 2.56 2.45 2.28 2.23 2.03 1.91 1.83 1.895 1.77

(0.1,1.9) HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
0.5 (0.3,1.7) HW 0.72 0.91 1.12 1.15 1.19 1.15 1.10 1.04 0.98 0.935 0.873 0.84 0.81 0.80

(0.5,1.5) HW 0.75 0.93 1.11 1.16 1.19 1.16 1.09 1.04 0.98 0.93 0.87 0.84 0.82 0.80

(0.1,4.6) HW 0.214 0.278 0.353 0.371 0.382 0.387 0.379 0.369 0.363 0.349 0.339 0.337 0.34 0.339
(0.3,3.8) HW 0.224 0.289 0.359 0.374 0.387 0.387 0.379 0.369 0.36 0.349 0.34 0.337 0.34 0.34
(0.5,3.0) HW 0.229 0.293 0.361 0.374 0.389 0.389 0.379 0.369 0.36 0.349 0.337 0.337 0.34 0.341

control limit HU and warning control limit HW . Set
the cumulative number of the short (long) sampling
interval NS = 1 (NL = 0), and the in-control warm-
up period Tw. Additionally, let the initial sampling
point t = 1.

Step 2. Generate an in-control GBE vector MIC
t =

(Xt; Yt)| of the GBE(�1; �2; �) model at sampling
point t using Eqs. (14) to (16).

Step 3. Compute the charting statistic Q2
t at

sampling point t using Eq. (10).

� If Q2
t 2 [0;HW ] and the corresponding TS < Tw

(i.e., set NL = NL + 1 and then TS = dL �NL +
dS�NS < Tw), let t = t+1, and then go to Step 2
to get a new MIC

t . Otherwise, if Q2
t 2 [0;HW ] but

the corresponding TS > Tw (i.e., set NL = NL+1
and then TS = dL � NL + dS � NS > Tw), let
t = t+ 1, and then move to Step 4 to generate a
new MOC

t .
� If Q2

t 2 (HW ; HU ] and the corresponding TS <
Tw (i.e., setNS = NS+1 and then TS = dL�NL+
dS�NS < Tw), let t = t+1, and then go to Step 2
to get a new MIC

t . Otherwise, if Q2
t 2 (HW ;HU ]

but the corresponding TS > Tw (i.e., set NS =
NS + 1 and then TS = dL�NL+dS�NS > Tw),
let t = t+ 1, and then move to Step 4 to generate
a new MOC

t .
� If Q2

t > HU , we discard the current in-control
random vector MIC

t , and move back to Step 2 to
generate a new MIC

t .

Step 4. Generate an out-of-control GBE vector
MOC

t = (Xt; Yt)| of the GBE(�01; �02; �) model at
sampling point t using Eqs. (14) to (16).

Step 5. Compute the charting statistic Q2
t at

sampling point t using Eq. (10).

� If Q2
t 2 [0;HW ], let t = t+ 1, and then go to Step

4 to get a new MOC
t after a long sampling interval

dL (i.e., let NL = NL + 1):
� If Q2

t 2 (HW ;HU ], let t = t + 1, and then go to
Step 4 to get a new MOC

t after a short sampling
interval dS (i.e., let NS = NS + 1):

� Otherwise, if Q2
t > HU , the process is considered

as out-of-control, and the corresponding steady-
state TS value, which equals to dL � NL + dS �
NS � Tw, can be obtained. Then reset t = 1,
NS = 1, and NL = 0, move to the next step.

Step 6. Repeat Steps 2 to 5 to get 105 TS values,
then the steady-state ATS value is computed by
averaging these TS values.

In the steady-state case, the two-stage procedure
for searching the upper control limit HU and the warn-
ing control limit HW of the suggested VSI MEWMA
GBE scheme is similar to the one in the zero-state case,
except that the in-control warm-up period Tw has to
be run �rst. With the constraint on ATS0 = 200, the
HU and HW values of the proposed scheme are listed in
Table 2 for � = 0:5, r 2 f0.01, 0.02, 0.05, 0.07, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1g, dS 2 f0:1; 0:3; 0:5g,
pS 2 f0:2; 0:5; 0:8g, and the in-control warm-up period
Tw = 50.

4. Performance comparisons

Since Xie et al. [8] have systematically compared
the ARL performance between the MEWMA scheme
and the other comparative charts, this section will
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compare both the zero-state and the steady-state ATS
performance between the proposed VSI MEWMA GBE
scheme and its FSI counterpart in three di�erent types
of shifts (namely, the downward shift, the upward shift,
and the hybrid shift). For both the zero-state and the
steady-state cases, the mean shift vector ("x; "y) of the
GBE model can be de�ned as:

("x; "y) =
�
�0x
�x
;
�0y
�y

�
; (17)

where "x and "y are the variables used to quantify
the mean shift. In this paper, the mean shift vector
("x; "y) = (1; 1) is used to denote the process is in
control, and then the ATS1 properties of the recom-
mended scheme in three di�erent types of shifts are
investigated, respectively.

4.1. Detection of the downward shift
For the GBE model studied in this paper, a downward
shift is de�ned, when:

� X shifts downward but Y keeps in-control (i.e., "x <
1; "y = 1);

� X keeps in-control but Y shifts downward (i.e., "x =
1; "y < 1);

� Or both X and Y shift downward (i.e., "x < 1; "y <
1).

By de�nition, the �rst two cases are denoted
as \single downward shifts", and the third one is
denoted as \double downward shift". Since two single
downward shift cases ("x < 1; "y = 1) and ("x =
1; "y < 1) have similar properties, for simplicity, only
the ATS performance of the single downward shift case
("x < 1; "y = 1) and the double downward shift case
("x < 1; "y < 1) are investigated in detail in this paper.

Without loss of generality, assume that the
ATS0 = 200, the dependency parameter � = 0:5,
the scale parameters �x = �y = 1, and the sampling
intervals (dS ; dL) = (0:1; 1:9). For the downward
shift case, both the zero-state and the steady-state
ATS performance of the suggested VSI MEWMA GBE
scheme is, respectively, listed in Tables 3 and 4. For
instance, if ("x; "y) = (0:8; 1) and r = 0:05, the zero-
state (or the steady-state) ATS1 value of the proposed
VSI MEWMA GBE scheme equals to 63.12 (60.56) (see
Tables 3 and 4). For comparison, the in-control ATS
value of the FSI MEWMA scheme (denoted as ATS00)
is set to be the same as that of the proposed scheme,
i.e., ATS00 = ATS0 = 200. Then, both the zero-
state and the steady-state ATS performance of the FSI
MEWMA scheme is also presented in Tables 3 and 4,
respectively. For instance, the out-of-control ATS value
of the FSI MEWMA scheme (denoted as ATS01) in the
zero-state (or the steady-state) case is 82.65 (79.85)

when ("x; "y) = (0:8; 0:8) and r = 0:02 (see Tables 3
and 4).

Note that the steady-state ATS values of these
two schemes are obtained by simulations with the in-
control warm-up period Tw = 50. For each prede-
termined downward shift vector ("x; "y), the minimum
out-of-control ATSs of the VSI MEWMA GBE scheme
and its FSI counterpart (denoted as ATSmin and
ATS0min) are respectively bolded in tables. Several
conclusions for the downward shift detection can be
drawn as follows:

1. For both the zero-state and the steady-state cases,
the proposed VSI MEWMA GBE scheme is e�ec-
tive for detecting the whole downward shift do-
main when a relatively small smoothing parameter
r 2 (0; 0:1] is selected. For example, when the
downward shift vector ("x; "y) = (0:8; 1), the zero-
state ATSmin of the proposed VSI MEWMA GBE
scheme can be obtained when r = 0:02 is selected
(see Table 3). Meanwhile, when the downward
shift vector ("x; "y) = (0:8; 0:8), the steady-state
ATSmin of the suggested scheme is obtained when
r equals to 0.01 (see Table 4). On the other hand,
for both the zero-state and the steady-state cases,
most ATS1 values of the suggested VSI MEWMA
GBE scheme are larger than the desired ATS0 when
r ranges from 0.2 to 1 (the phenomenon known
as \ATS-biased"). This means that the proposed
scheme may lose its e�ect on the downward shift
detection if a relatively large smoothing parameter
r 2 [0:2; 1] is considered.

2. Irrespective of the zero-state or the steady-state
cases, every ATSmin of the VSI MEWMA GBE
scheme is smaller than the corresponding ATS0min
of the FSI MEWMA scheme. This indicates that
the VSI MEWMA GBE scheme is e�ective than
the FSI MEWMA scheme to detect a downward
shift. For example, when ("x; "y) = (0:2; 1), the
zero-state ATSmin and ATS0min are 5.08 and 11.86,
respectively (see Table 3), and the corresponding
steady-state ATSmin and ATS0min are 5.14 and
11.26, respectively (see Table 4).

3. Irrespective of the zero-state or the steady-state
cases, with the same smoothing parameter r, the
VSI MEWMA GBE scheme is more e�ective for
detecting a single downward shift than the cor-
responding double downward shift. For instance,
when the smoothing parameter r = 0:05, the zero-
state ATS1 values of the proposed VSI MEWMA
GBE scheme for the single downward shift vector
("x; "y) = (0:5; 1) and the corresponding double
downward shift vector ("x; "y) = (0:5; 0:5) are 11.91
and 14.52, respectively (see Table 3). Meanwhile,
the corresponding steady-state ATS1 values are
10.98 and 12.86, respectively (see Table 4).
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Table 3. Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for the downward shift
domain (ATS0 = ATS00 = 200; � = 0:5; dS = 0:1; dL = 1:9).

VSI MEWMA GBE chart and FSI MEWMA chart

("x, "y)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(1,1) ATS0 199.78 200.12 200.58 199.84 200.59 200.17 199.85 200.22 199.64 199.64 199.41 200.38 199.80 200.44
ATS00 199.94 200.12 200.40 200.29 200.20 199.62 199.86 199.67 200.01 200.13 200.17 200.18 199.89 199.83

(0.8,1) ATS1 53.28 49.94 63.12 86.78 127.17 * * * * * * * * *
ATS01 66.23 67.92 98.17 136.99 185.20 * * * * * * * * *

(0.5,1) ATS1 18.96 15.72 11.91 11.04 11.56 23.09 46.77 75.93 104.93 133.28 159.83 186.27 * *
ATS01 24.97 22.76 22.51 25.82 39.35 96.77 141.81 176.64 * * * * * *

(0.2,1) ATS1 11.46 9.32 6.62 5.77 5.08 5.72 7.46 9.90 12.83 16.87 22.78 33.08 50.71 84.69
ATS01 15.34 13.53 11.86 11.94 13.38 30.53 56.10 82.05 104.94 124.73 139.88 153.82 165.39 176.77

(0.1,1) ATS1 10.17 8.28 5.65 5.07 4.19 4.43 5.46 7.42 9.29 10.85 12.19 14.03 18.34 32.51
ATS01 13.64 11.94 10.27 10.16 10.90 21.38 40.08 61.27 81.20 99.40 114.06 127.36 137.75 149.23

(0.8,0.8) ATS1 60.66 59.10 104.19 * * * * * * * * * * *
ATS01 76.01 82.65 175.11 * * * * * * * * * * *

(0.5,0.5) ATS1 21.89 18.46 14.52 13.94 21.41 * * * * * * * * *
ATS01 28.07 26.05 27.67 35.32 112.56 * * * * * * * * *

(0.2,0.2) ATS1 13.07 10.76 7.73 6.93 6.16 * * * * * * * * *
ATS01 16.99 15.10 13.50 13.90 16.55 * * * * * * * * *

(0.1,0.1) ATS1 11.40 9.22 6.62 5.90 4.98 * * * * * * * * *
ATS01 15.03 13.24 11.53 11.57 12.82 * * * * * * * * *

The asterisk (*) represents the ATS value lager than 200.

4. In order to compare the ATS performance from
quantitative assessment, according to Wu et al.
[45], the average of the ratio (AR) of ATS values
is de�ned as follows,

AR=
Pm
j=1 (ATSmin("x;j ; "y;j)=ATS0min("x;j ; "y;j))

m
;(18)

where m is the number of mean shift vectors
included in the comparison, ATSmin("x;j ; "y;j) is
the minimum ATS1 value produced by the pro-
posed VSI MEWMA GBE scheme at the jth mean
shift vector ("x;j ; "y;j), and ATS0min("x;j ; "y;j) is the
minimum ATS01 value of the FSI MEWMA scheme
at the same mean shift vector. Obviously, if the
AR value is smaller than one, the proposed scheme
is generally more e�ective than the FSI MEWMA

scheme in the whole shift domain and vice versa.
For the downward shift detection, as it can be
computed from Tables 3 and 4, the AR of the
proposed VSI MEWMA GBE scheme for the zero-
state case is 0.54. Meanwhile, for the steady-state
case, the AR of the proposed scheme is 0.53. This
fact indicates that the VSI MEWMA GBE scheme
outperforms the FSI MEWMA scheme for detecting
the whole downward shift domain, in average.

4.2. Detection of the upward shift
The upward shift in the GBE model can be de�ned, if:

� X shifts upward but Y keeps in-control (i.e., "x >
1; "y = 1);
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Table 4. Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for the downward shift
domain (ATS0 = ATS00 = 200; � = 0:5; dS = 0:1; dL = 1:9).

VSI MEWMA GBE chart and FSI MEWMA chart

("x; "y)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

(1,1) ATS0 199.93 200.70 200.64 200.04 200.51 199.47 199.83 200.40 200.06 200.62 199.71 199.20 200.40 200.51
ATS00 200.25 199.82 200.14 200.17 199.80 199.72 199.73 200.11 199.48 200.59 199.62 199.90 199.65 200.18

(0.8,1) ATS1 45.86 44.26 60.56 85.90 126.91 * * * * * * * * *
ATS01 63.98 64.94 97.13 137.02 184.41 * * * * * * * * *

(0.5,1) ATS1 16.48 13.80 10.98 10.39 11.15 22.85 47.05 75.91 106.75 134.07 161.06 185.07 * *
ATS01 24.30 21.71 21.53 25.07 38.82 97.19 143.22 176.97 * * * * * *

(0.2,1) ATS1 10.32 8.47 6.34 5.66 5.14 5.87 7.95 10.41 13.21 17.18 23.53 33.14 51.49 84.71
ATS01 14.94 12.93 11.26 11.46 13.00 30.68 56.44 81.90 104.50 124.52 140.81 153.48 164.69 175.97

(0.1,1) ATS1 9.23 7.57 5.61 4.98 4.46 4.59 6.04 7.80 9.64 11.31 12.96 14.92 19.12 32.78
ATS01 13.26 11.42 9.75 9.73 10.52 21.49 40.38 61.48 81.00 98.36 114.41 126.68 138.49 148.34

(0.8,0.8) ATS1 51.84 51.98 103.64 * * * * * * * * * * *
ATS01 73.31 79.85 178.53 * * * * * * * * * * *

(0.5,0.5) ATS1 18.53 15.64 12.86 12.74 20.74 * * * * * * * * *
ATS01 27.30 24.86 26.53 34.70 113.58 * * * * * * * * *

(0.2,0.2) ATS1 11.39 9.37 7.11 6.38 5.92 * * * * * * * * *
ATS01 16.45 14.32 12.75 13.27 16.05 * * * * * * * * *

(0.1,0.1) ATS1 10.08 8.27 6.18 5.50 4.98 * * * * * * * * *
ATS01 14.52 12.52 10.87 11.03 12.37 * * * * * * * * *

The asterisk (*) represents the ATS value lager than 200.

� X keeps in-control but Y shifts upward (i.e., "x =
1; "y > 1);

� or both X and Y shift upward (i.e., "x > 1; "y > 1).

Similar to the downward shift cases, only the ATS
performance of the single upward shift case ("x >
1; "y = 1) and the double upward shift case ("x >
1; "y > 1) are investigated in detail in this section. In
addition, the same settings, say, ATS0 = 200, � = 0:5,
�x = �y = 1, and (dS ; dL) = (0:1; 1:9) are used in
this section. For the upward shift detection, both the
zero-state and the steady-state ATS performance of the
proposed VSI MEWMA GBE scheme is presented in
Tables 5 and 6, respectively. For example, the zero-
state (or the steady-state) ATS1 of the proposed VSI

MEWMA GBE scheme is 15.51 (15.39) when ("x; "y) =
(1:5; 1) and r = 0:1 are selected (see Tables 5 and 6).

As a comparison, when ATS00 = ATS0 = 200,
both the zero-state and the steady-state ATS perfor-
mance of the FSI MEWMA scheme for the upward shift
domain is also given in Tables 5 and 6, respectively. For
instance, when ("x; "y) = (2; 1) and r = 0:07, the zero-
state ATS01 of the FSI MEWMA scheme is 6.62 (see
Table 5), and the corresponding steady-state ATS01 is
6.73 (see Table 6). It is worth noting that, for the
upward shift detection, the steady-state ATS values of
these two schemes are also obtained by using the in-
control warm-up period Tw = 50. Several conclusions
of the upward shift detection can be made as follows:

1. For both the zero-state and the steady-state cases,
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Table 5. Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for the upward shift
domain (ATS0 = ATS00 = 200; � = 0:5; dS = 0:1; dL = 1:9).

VSI MEWMA GBE chart and FSI MEWMA chart

("x; "y)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(1,1) ATS0 199.78 200.12 200.58 199.84 200.59 200.17 199.85 200.22 199.64 199.64 199.41 200.38 199.80 200.44
ATS00 199.94 200.12 200.40 200.29 200.20 199.62 199.86 199.67 200.01 200.13 200.17 200.18 199.89 199.83

(1.5,1) ATS1 22.90 19.71 16.35 15.46 15.51 18.49 21.96 25.74 28.93 32.17 34.69 37.24 38.86 40.06
ATS01 26.15 23.65 21.24 21.38 22.28 26.37 30.63 34.26 37.28 39.75 41.71 43.58 45.07 46.29

(2,1) ATS1 11.32 9.59 7.34 6.62 6.07 5.69 6.06 6.88 7.80 8.87 9.97 11.03 12.01 12.77
ATS01 13.35 11.78 10.01 9.69 9.66 10.32 11.39 12.52 13.62 14.60 15.56 16.27 17.08 17.72

(5,1) ATS1 2.90 2.42 1.80 1.60 1.42 1.13 0.97 0.90 0.86 0.81 0.77 0.78 0.82 0.91
ATS01 4.02 3.58 3.04 2.89 2.78 2.65 2.65 2.67 2.71 2.75 2.82 2.87 2.95 3.02

(10,1) ATS1 1.33 1.12 0.85 0.76 0.68 0.54 0.46 0.42 0.39 0.35 0.31 0.27 0.26 0.27
ATS01 2.34 2.13 1.88 1.81 1.77 1.69 1.66 1.65 1.66 1.66 1.66 1.68 1.68 1.71

(1.5,1.5) ATS1 23.01 19.89 16.37 15.41 15.02 16.18 17.82 19.59 21.12 22.68 23.84 24.69 25.47 25.17
ATS01 26.01 23.00 19.63 19.06 19.19 20.67 22.59 24.52 26.00 27.33 28.25 29.30 30.05 30.81

(2,2) ATS1 10.96 9.19 7.07 6.41 5.88 5.56 5.74 6.15 6.66 7.17 7.73 8.20 8.37 8.34
ATS01 13.15 11.42 9.43 8.93 8.68 8.68 9.13 9.62 10.16 10.55 10.98 11.45 11.78 12.15

(5,5) ATS1 2.53 2.11 1.58 1.39 1.24 1.03 0.93 0.89 0.87 0.86 0.87 0.88 0.90 0.87
ATS01 3.78 3.32 2.78 2.64 2.53 2.37 2.32 2.32 2.32 2.33 2.35 2.38 2.41 2.43

(10,10) ATS1 1.11 0.93 0.71 0.64 0.57 0.48 0.44 0.41 0.39 0.38 0.37 0.36 0.36 0.35
ATS01 2.14 1.96 1.73 1.67 1.62 1.54 1.52 1.50 1.49 1.50 1.50 1.50 1.51 1.51

the proposed VSI MEWMA GBE scheme with a
relatively small (or large) smoothing parameter r
is e�ective in detecting a small (large) upward
shift. For instance, when the upward shift vectors
are ("x; "y) = (1:5; 1) and ("x; "y) = (10; 1), the
zero-state ATSmin of the proposed VSI MEWMA
GBE scheme can be obtained when the smoothing
parameters r are 0.07 and 0.9, respectively (see
Table 5). Meanwhile, when the upward shift vectors
are ("x; "y) = (1:5; 1:5) and ("x; "y) = (10; 10), the
steady-state ATSmin of the suggested scheme can
be obtained when the smoothing parameters r are
0.1 and 1, respectively (see Table 6).

2. Irrespective of the zero-state or the steady-state
cases, when using the same smoothing parameter

r, the VSI MEWMA GBE scheme seems more
e�ective in detecting the double upward shift than
the corresponding single upward shift. For instance,
when the smoothing parameter r = 0:2, for the
upward shift vectors ("x; "y) = (5; 1) and ("x; "y) =
(5; 5), the zero-state ATS1 values of the proposed
scheme are, respectively, 1.13 and 1.03 (see Table
5). Meanwhile, the steady-state ATS1 are 1.82 and
1.80, respectively (see Table 6).

3. Irrespective of the zero-state or the steady-state
cases, every ATSmin of the VSI MEWMA GBE
scheme is smaller than the corresponding ATS0min
of the FSI MEWMA scheme. This indicates that
the VSI MEWMA GBE scheme works better than
the FSI MEWMA scheme in monitoring upward
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Table 6. Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for the upward shift
domain (ATS0 = ATS00 = 200; � = 0:5; dS = 0:1; dL = 1:9).

VSI MEWMA GBE chart and FSI MEWMA chart

("x; "y)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

(1,1) ATS0 199.93 200.70 200.64 200.04 200.51 199.47 199.83 200.40 200.06 200.62 199.71 199.20 200.40 200.51
ATS00 200.25 199.82 200.14 200.17 199.80 199.72 199.73 200.11 199.48 200.59 199.62 199.90 199.65 200.18

(1.5,1) ATS1 20.38 17.73 15.48 15.08 15.39 18.54 22.62 26.32 29.84 32.78 35.29 37.39 39.85 40.64
ATS01 25.42 22.79 20.76 20.99 21.89 26.40 30.55 34.14 37.15 39.59 41.94 43.50 45.14 46.54

(2,1) ATS1 10.53 9.00 7.30 6.73 6.31 6.12 6.61 7.46 8.50 9.57 10.74 11.71 12.90 13.66
ATS01 13.04 11.46 9.80 9.52 9.50 10.31 11.40 12.53 13.61 14.54 15.54 16.38 17.17 17.70

(5,1) ATS1 3.41 2.98 2.45 2.26 2.09 1.82 1.71 1.65 1.61 1.59 1.60 1.62 1.71 1.79
ATS01 3.96 3.50 2.97 2.85 2.74 2.63 2.63 2.66 2.71 2.76 2.82 2.88 2.94 3.01

(10,1) ATS1 2.10 1.90 1.62 1.52 1.44 1.31 1.26 1.22 1.20 1.18 1.17 1.14 1.15 1.16
ATS01 2.30 2.09 1.86 1.80 1.75 1.68 1.65 1.65 1.65 1.66 1.67 1.68 1.68 1.70

(1.5,1.5) ATS1 21.06 18.41 15.87 15.32 15.20 16.56 18.52 20.16 22.01 23.40 24.78 25.46 26.21 25.79
ATS01 25.47 22.30 19.33 18.76 18.86 20.57 22.70 24.38 25.87 27.09 28.31 29.38 29.91 30.70

(2,2) ATS1 10.55 9.00 7.27 6.77 6.39 6.13 6.45 6.88 7.44 7.99 8.57 8.91 9.24 9.14
ATS01 12.88 11.16 9.27 8.80 8.54 8.65 9.08 9.60 10.07 10.55 11.07 11.37 11.76 12.08

(5,5) ATS1 3.21 2.79 2.32 2.15 2.00 1.80 1.74 1.70 1.71 1.71 1.74 1.75 1.78 1.76
ATS01 3.77 3.29 2.77 2.63 2.51 2.36 2.32 2.31 2.31 2.35 2.37 2.38 2.40 2.44

(10,10) ATS1 1.97 1.77 1.54 1.46 1.39 1.30 1.28 1.26 1.25 1.25 1.25 1.25 1.25 1.23
ATS01 2.14 1.95 1.72 1.66 1.61 1.54 1.51 1.50 1.49 1.50 1.50 1.50 1.50 1.51

shifts. For instance, when the upward shift vec-
tor ("x; "y) = (2; 2), the zero-state ATSmin and
ATS0min are 5.56 and 8.68, respectively (see Table
5), and the corresponding steady-state ATSmin and
ATS0min are 1.70 and 2.34, respectively (see Table
6).

4. The zero-state and the steady-state AR values for
the upward shift case are 0.47 and 0.72, respectively
(see Tables 5 and 6). This means that, in average,
the VSI MEWMA GBE scheme works better than
the FSI MEWMA scheme in detecting upward
shifts.

4.3. Detection of the hybrid shift
For the GBE model, a hybrid shift is de�ned, if:

� X shifts downward but Y shifts upward (i.e., "x <
1; "y > 1),

� or X shifts upward but Y shifts downward (i.e., "x >
1; "y < 1).

The same settings as in the upward shift case are
also used for the hybrid shift case, i.e., ATS0 = 200,
� = 0:5, �x = �y = 1, and (dS ; dL) = (0:1; 1:9).
For the hybrid shift detection, both the zero-state and
the steady-state ATS performance of the proposed VSI
MEWMA GBE scheme is, respectively, given in Tables
7 and 8. For instance, when ("x; "y) = (0:8; 1:5) and
r = 0:2, the zero-state ATS1 of the proposed VSI
MEWMA GBE scheme is 11.44 (see Table 7), and the
corresponding steady-state ATS1 value equals to 11.55
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Table 7. Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for the hybrid shift
domain (ATS0 = ATS00 = 200; � = 0:5; dS = 0:1; dL = 1:9).

VSI MEWMA GBE chart and FSI MEWMA chart

("x; "y)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80

HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(1,1)
ATS0 199.78 200.12 200.58 199.84 200.59 200.17 199.85 200.22 199.64 199.64 199.41 200.38 199.80 200.44

ATS00 199.94 200.12 200.40 200.29 200.20 199.62 199.86 199.67 200.01 200.13 200.17 200.18 199.89 199.83

(0.8,1.5)
ATS1 17.07 14.39 11.22 10.32 9.83 11.44 14.52 18.20 21.84 25.61 29.08 32.41 35.65 38.05

ATS01 20.52 18.41 16.50 16.62 17.66 22.15 26.51 30.55 34.22 37.06 39.77 42.34 43.95 45.56

(0.5,2)
ATS1 7.69 6.38 4.67 4.07 3.57 2.89 2.61 2.68 2.93 3.37 3.96 4.83 6.10 7.92

ATS01 9.83 8.61 7.26 7.02 6.95 7.45 8.42 9.44 10.54 11.58 12.47 13.37 14.17 14.92

(0.2,5)
ATS1 2.41 2.01 1.47 1.28 1.11 0.84 0.70 0.63 0.58 0.49 0.36 0.31 0.31 0.33

ATS01 3.60 3.21 2.73 2.58 2.50 2.37 2.36 2.39 2.42 2.47 2.54 2.57 2.64 2.72

(0.1,10) ATS1 1.20 1.00 0.75 0.67 0.59 0.46 0.39 0.35 0.32 0.26 0.17 0.16 0.16 0.17

ATS01 2.23 2.03 1.80 1.74 1.69 1.61 1.59 1.58 1.58 1.58 1.60 1.60 1.62 1.63

Table 8. Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for the hybrid shift
domain (ATS0 = ATS00 = 200; � = 0:5; dS = 0:1; dL = 1:9).

VSI MEWMA GBE chart and FSI MEWMA chart

("x; "y)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796

HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

(1,1)
ATS0 199.93 200.70 200.64 200.04 200.51 199.47 199.83 200.40 200.06 200.62 199.71 199.20 200.40 200.51

ATS00 200.25 199.82 200.14 200.17 199.80 199.72 199.73 200.11 199.48 200.59 199.62 199.90 199.65 200.18

(0.8,1.5)
ATS1 15.17 12.96 10.61 10.01 9.79 11.55 14.94 18.65 22.57 26.26 29.75 32.78 36.36 38.91

ATS01 19.97 17.70 16.10 16.31 17.31 22.00 26.44 30.46 34.19 37.08 39.61 42.24 43.86 45.66

(0.5,2)
ATS1 7.37 6.18 4.79 4.31 3.90 3.29 3.17 3.24 3.53 4.01 4.71 5.55 6.96 8.65

ATS01 9.61 8.30 7.02 6.81 6.80 7.40 8.39 9.42 10.49 11.55 12.50 13.36 14.22 14.90

(0.2,5)
ATS1 3.00 2.60 2.11 1.94 1.79 1.54 1.43 1.36 1.31 1.27 1.24 1.20 1.19 1.22

ATS01 3.53 3.13 2.66 2.55 2.45 2.37 2.35 2.38 2.42 2.47 2.53 2.59 2.64 2.71

(0.1,10)
ATS1 2.00 1.78 1.53 1.43 1.35 1.23 1.18 1.15 1.12 1.10 1.08 1.06 1.05 1.04

ATS01 2.20 2.00 1.77 1.72 1.67 1.61 1.58 1.58 1.58 1.58 1.59 1.60 1.62 1.63
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(see Table 8). For comparison, both the zero-state and
the steady-state ATS performance of the FSI MEWMA
scheme based on ATS00 = 200 is also listed in Tables
7 and 8. For instance, when ("x; "y) = (0:5; 2) and
r = 0:4, the zero-state ATS01 of the FSI MEWMA
scheme is 2.68 (see Table 7), and the corresponding
steady-state ATS01 value is 3.24 (see Table 8).

From Tables 7 and 8, some conclusions can be
made as follows:

1. Similar to the upward shift case, when using a
relatively small (or large) smoothing parameter
r, the suggested VSI MEWMA GBE scheme is
also e�ective for detecting small (large) hybrid
shifts. For example, when the hybrid shift vectors
("x; "y) = (0:8; 1:5) and ("x; "y) = (0:2; 5), the
zero-state ATSmin of the proposed scheme can
be obtained when the smoothing parameters are
r = 0:1 and r = 0:8, respectively (see Table
7). In addition, when the hybrid shift vectors
are ("x; "y) = (0:5; 2) and ("x; "y) = (0:1; 10), the
steady-state ATSmin of the suggested scheme can
be obtained when smoothing parameters are r = 0:3
and r = 1, respectively (see Table 8).

2. Every ATSmin of the VSI MEWMA GBE scheme
is smaller than the corresponding ATS0min of the
FSI MEWMA scheme. This indicates that the
VSI MEWMA GBE scheme performs better than
the FSI MEWMA scheme for detecting hybrid
shifts. For example, when the upward shift vector
("x; "y) = (0:5; 2), the zero-state ATSmin and
ATS0min values are 2.61 and 6.95, respectively (see
Table 7). Meanwhile, the steady-state ATSmin and
ATS0min values are 3.17 and 6.80, respectively (see
Table 8).

3. The zero-state and the steady-state AR values
in the case of hybrid shift are 0.30 and 0.56,
respectively (see Tables 7 and 8). This fact means
that the suggested VSI MEWMA GBE scheme also
outperforms the FSI MEWMA scheme in the whole
hybrid shift detection.

5. A simulation example

Similar to the headache relief time dataset analyzed by
Xie et al. [8], a simulation example of muscle strain
relief time is used here to illustrate the implementa-
tion of the proposed VSI MEWMA GBE scheme for
monitoring GBE data.

In the medical experiment, it was assumed that
each of the �rst 10 volunteers had been treated
separately for muscle strain with modality therapy
and manual therapy, the corresponding relief time (in
hours) from muscle strain are denoted as X and Y ,
respectively. All of these 10 paired GBE data (X;Y )
are recorded in Table 9. According to Xie et al. [8],

if the �rst 10 couples are considered as the in-control
GBE data, the corresponding average relief time b� can
be estimated using b� = �M = 1

n
Pn
t=1Mt. Addition-

ally, the dependency parameter is estimated by usingb�=� log2( 1
n
Pn
t=1 min(Xt/ �X, Yt/ �Y )), where n = 10 in

this example [38]. Based on these two formulas, the
estimated scale parameters and dependency parameter
are b�1 = 3:43, b�2 = 2:68, and b� = 0:21, respectively.

We further assume that a new medicine will be
used in combination with these two physical thera-
pies in the subsequent medical experiment, and the
pharmaceutical company claims that the new medicine
could reduce the average relief time of these two
treatments e�ectively. Based on this assumption,
we use the proposed VSI MEWMA GBE scheme to
monitor the relief time data to verify the e�ectiveness of
the new medicine, and the medical experiment can be
ended when the suggested VSI MEWMA GBE scheme
signals. According to the pre-designed experimental
guidelines, only after a speci�ed waiting time to ensure
that the new medicine is completely metabolized and
has no other side e�ects, then a new volunteer can be
invited to combine the new medicine for two physical
therapies to obtain the next relief time data. If the
statistic (in this example, it is Q2

t ) shows that the
e�cacy of the new medicine is not signi�cant, we need
to wait longer to ensure that the health of volunteers
is not damaged by other unknown factors. But when
the statistic (i.e., Q2

t ) shows that the therapeutic
e�ect is obvious, we can shorten the waiting time
to speed up the experiment on the basis that the
medicine is completely metabolized. In this example,
we assume that the desired experimental time is 4800
hours (i.e., ATS0=4800), the average waiting time
interval E(d)=24 hours, the short waiting time interval
dS=12 hours, and the long waiting time interval dL=36
hours.

On the other hand, if we assume that the use
of the new medicine can shorten the average relief
time of two physical therapies to 80% and 50% of
the de�ned one, say, ("x; "y) = (0:8; 0:5), then the
corresponding Phase II GBE data are listed in Table 9.
According to the guideline mentioned in Subsection 4.1,
the proposed VSI MEWMA GBE scheme is e�ective
for detecting the whole downward shift domain when
a relatively small smoothing parameter r 2 (0; 0:1] is
selected. Hence, the smoothing parameter r=0.02 is
considered in this example. Moreover, based on the
two-stage procedure introduced above, when b�=0.21,
dS=12, and dL=36, the upper control limit HU and the
warning control limit HW of the VSI MEWMA GBE
scheme can be easily obtained to achieve the desired
ATS0=4800, say, HU=5.256 and HW=0.902. With
these designed parameters, the charting statistic Q2

t
of the VSI MEWMA GBE scheme can be obtained,
see Column 6 in Table 9. Note that the proposed VSI
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Table 9. An example of using the proposed VSI MEWMA GBE chart on monitoring the relief time of volunteers after
taking the new medicine (in hours).

VSI MEWMA GBE chart

( r = 0:02, � = 0:21, HU = 5:256, HW = 0:902)

t
Mt Wt Q2

t dt �dt
Xt Yt W1;t W2;t

0 - - 0 0 - - -

1 3.400 1.900 -0.001 -0.016 0.015 - -

2 2.700 1.800 -0.015 -0.033 0.035 - -

3 5.100 5.300 0.019 0.020 0.006 - -

4 4.600 4.400 0.042 0.054 0.057 - -

5 4.300 3.000 0.058 0.059 0.053 - -

6 4.100 3.800 0.070 0.081 0.109 - -

7 4.000 1.100 0.080 0.047 0.059 - -

8 2.700 2.400 0.064 0.041 0.036 - -

9 3.100 3.000 0.056 0.047 0.030 - -

10 0.300 0.100 -0.007 -0.006 0.001 - -

11 0.161 0.122 -0.073 -0.057 0.047 36 36

12 0.985 0.410 -0.120 -0.101 0.142 36 72

13 9.933 3.391 0.012 -0.085 0.590 36 108

14 3.485 1.760 0.013 -0.102 0.828 36 144

15 0.342 0.142 -0.049 -0.150 0.931 36 156

16 3.529 1.162 -0.046 -0.178 1.447 12 168

17 5.199 2.431 -0.010 -0.179 2.002 12 180

18 6.325 2.459 0.048 -0.180 3.093 12 192

19 2.070 0.454 0.020 -0.221 3.719 12 204

20 3.116 0.878 0.014 -0.253 4.618 12 216

21 3.913 2.209 0.023 -0.257 5.013 12 228

22 2.475 1.995 0.003 -0.266 4.824 12 240

23 1.419 0.891 -0.037 -0.296 4.922 12 252

24 1.610 1.266 -0.072 -0.318 4.865 12 264

25 5.456 2.118 -0.031 -0.323 6.135 12 276

MEWMA GBE scheme signals at the 25th volunteer
(in bold), and the corresponding waiting time is 276
hours. However, if the FSI MEWMA scheme is used in
the process to monitor the relief time data, the waiting
time will be 360 hours (15 volunteers � 24 hours). This
fact indicates that the suggested VSI MEWMA GBE
scheme works better than the FSI MEWMA scheme in
monitoring the GBE data.

6. Conclusion

In this paper, a VSI MEWMA type scheme is proposed
to monitor the mean vector of Gumbel's Bivariate

Exponential (GBE) model. For each type of shift,
the Monte Carlo approach is used to evaluate the
properties of the proposed scheme in both the zero-
state and the steady-state cases. Comparisons between
the suggested VSI MEWMA GBE scheme and the FSI
MEWMA scheme in detecting three types of shifts are
conducted, and the simulation results show that the
suggested VSI MEWMA GBE scheme works better
than the FSI MEWMA scheme in monitoring the whole
shift domain. Finally, a simulation example is provided
to illustrate the implementation of the suggested VSI
MEWMA GBE scheme for monitoring the data of
muscle strain relief time.
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It is sensible to note that the zero-state and the
steady-state Average Time to Signal (ATS) can not
represent the entire TS distribution of the Variable
Sampling Interval (VSI) charts. The Median Time to
Signal (MTS) could also be used as a new performance
measure for the VSI MEWMA GBE scheme in both the
zero-state and steady-state cases. Hence, the current
work can be extended to design a VSI MEWMA type
scheme based on MTS for monitoring the GBE data.
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