Unit Nadarajah and Haghighi distribution: Properties and applications in quality control

Document Type : Research Article

Authors

1 Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan.

2 Department of Statistics, St. Anthony's College, Shillong, India.

10.24200/sci.2021.57302.5167

Abstract

In practice, the data related to rates and proportion may have excess of ones wherein the beta distribution does not  fit well. To deal with the inflation of ones, this article introduces unit Nadarajah and Haghighi distribution. Besides deriving statistical properties of the proposed distribution, several estimation methods are discussed. In particular, maximum likelihood estimation, least squares estimation, weighted least squares estimation, maximum product of spacing, minimum spacing absolute distance estimation, minimum spacing absolute log-distance estimation, Cramer-Von-Mises, Anderson-Darling method and right-tail Anderson-Darling method are considered. Using real data sets, it is shown that the new distribution outperforms some well-known existing distributions. Furthermore, the application of the proposed distribution in quality control is also discussed. A control chart using unit Nadarajah and Haghighi distribution is constructed and its performance is evaluated using the average run length.

Keywords

Main Subjects


References:
1. Mazucheli, J., Menezes, A.F.B., Fernandes, L.B., et al. The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates", Journal of Applied Statistics, 47(6), pp. 954-974 (2020). https://doi.org/10.1080/02664763.2019.1657813.
2. Mazucheli, J., Menezes, A.F.B., and Dey, S. "Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution", Communications in Statistics-Theory and Methods, 47(2), pp. 3767-3778 (2018). http://dx.doi.org/10.1080/03610926.2017.1361993.
3. Menezes, A.F.B., Mazucheli, J., and Dey, S. "The unitlogistic distribution: Different methods of estimation", Pesquisa Operacional, 38(3), pp. 555-578 (2018). https://doi.org/10.1590/0101-7438.2018.038.03.0555.
4. Mazucheli, J., Menezes, A.F.B., and Chakraborty, S. "On the one parameter unit- Lindley distribution and its associated regression model for proportion data", Journal of Applied Statistics, 46(4), pp. 700- 714 (2019). https://doi.org/10.48550/arXiv.1801.02512.
5. Mazucheli, J., Menezes, A.F.B., and Dey, S. "Unit-Gompertz distribution with applications", Statistica, 79(1), pp. 25-43 (2019). https://doi.org/10.6092/issn.1973-2201/8497.
6. Sangsanit, Y. and Bodhisuwan, W. "The Topp-Leone generator of distributions: Properties and inferences", Songklanakarin Journal of Science & Technology, 38(5), pp. 537-548 (2016). http://dx.doi.org/10.14456/sjst-psu.2016.69.
7. Condino, F. and Domma, F. "A new distribution function with bounded support: The reflected generalized Topp-Leone power series distribution", Metron, 75(1), pp. 51-68 (2017). DOI: 10.0.3.239/s40300-016-0095-6.
8. Nadarajah, S. and Haghighi, F. "An extension of the exponential distribution", Statistics, 45(6), pp. 543-558 (2011). https://doi.org/10.1080/02331881003678678.
9. Marshall, A.W. and Olkin, I., Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families, Springer Series in Statistics, Springer New York (2007).
10. Aban, I.B., Meerschaert, M.M., and Panorska, A.K. "Parameter estimation for the truncated pareto distribution", Journal of the American Statistical Association, 101(473), pp. 270-277 (2006). https://doi.org/10.1198/016214505000000411.
11. Zhang, T. and Xie, M. "On the upper truncated Weibull distribution and its reliability implications", Reliability Engineering & System Safety, 96(1), pp. 194-200 (2011). https://doi.org/10.1016/j.ress.2010.09.004.
12. Papke, L.E. andWooldridge, J.M. "Econometric methods for fractional response variables with an application to 401(k) plan participation rates", Journal of Applied Econometrics, 11(6), pp. 619-632 (1996). https://doi.org/10.1002/(SICI)1099-1255 (199611)11:6.
13. Fletcher, S.G. and Ponnambalam, K. "Estimation of reservoir yield and storage distribution using moments analysis", Journal of Hydrology, 182(1), pp. 259-275 (1996). https://doi.org/10.1016/0022-1694(95)02946- X.
14. Seifi, A., Ponnambalam, K., and Vlach, J. "Maximization of manufacturing yield of systems with arbitrary distributions of component values", Annals of Operations Research, 99, pp. 373-383 (2000). DOI: 10.1023/A:1019288220413.
15. Gangi, A., Ponnambalam., K., Khalili., D., et al. "Grain yield reliability analysis with crop water demand uncertainty", Stochastic Environmental Research and Risk Assessment, 20(4), pp. 259-277 (2006). http://dx.doi.org/10.1007/s00477-005-0020-7.
16. Cook, D.O., Kieschnick, R., and McCullough, B.D. "Regression analysis of proportions in finance with self selection", Journal of Empirical Finance, 15(5), pp. 860-867 (2008). https://doi.org/10.1016/j.jempfin.2008.02.001.
17. Genc, A.I. "Estimation of p(x > y) with Topp- Leone distribution", Journal of Statistical Computation and Simulation, 83(2), pp. 326-339 (2013). https://doi.org/10.1080/00949655.2011.607821.
18. Ali, S., Dey, S., Tahir, M.H., et al. "Two-parameter logistic-exponential distribution: Some new properties and estimation methods", American Journal of Mathematical and Management Sciences, 39(3), pp. 270-298 (2020). https://doi.org/10.1080/01966324.2020.1728453.
19. Ali, S., Dey, S., Tahir, M.H., et al. "A comparison of different methods of estimation for the  flexible Weibull distribution", Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), pp. 794-814 (2020). https://doi.org/10.31801/cfsuasmas.597680.
20. Cheng, R.C.H. and Amin, N.A.K. "Maximum product of spacings estimation with application to the lognormal distribution", Tech. Rep., Mathematical Report 79-1. Cardiff: University of Wales IST (1979).
21. Cheng, R.C.H. and Amin, N.A.K. "Estimating parameters in continuous univariate distributions with a shifted origin", Journal of the Royal Statistical Society. Series B (Methodological), 45(3), pp. 394-403 (1983). https://www.jstor.org/stable/234541.
22. Torabi, H. "A general method for estimating and hypotheses testing using spacings", Journal of Statistical Theory and Practice, 8(2), pp. 163-168 (2008). 
23. MacDonald, P.D.M. "Comment on an estimation procedure for mixtures of distributions by Choi and Bulgren", Journal of the Royal Statistical Society, Series B (Methodological), 33(2), pp. 326-329 (1971). https://www.jstor.org/stable/2985013.
24. Shamsuzzaman, M., Xie, X., Goh, N.T., et al. "Integrated control chart system for time-betweenevents monitoring in a multistage manufacturing system", The International Journal of Advanced Manufacturing Technology, 40(3-4), pp. 373-381 (2009). https://doi.org/10.1007/s00170-007-1338-8.
25. Zhang, C.W., Xie, M., Liu, J.Y., et al. "A control chart for the gamma distribution as a model of time between events", International Journal of Production Research, 45(23), pp. 5649-5666 (2007). https://doi.org/10.1080/00207540701325082.
26. Ali, S., Pievatolo, A., and Gob, R. "An overview of control charts for high quality processes", Quality and Reliability Engineering International, 32(7), pp. 2171- 2189 (2016). https://doi.org/10.1002/qre.1957.
27. Linda, L.H., Fernandes, F.H., and Bourguignon, M. "Control charts to monitor rates and proportions", Quality and Reliability Engineering International, 35(1), pp. 74-83 (2019). http://dx.doi.org/10.1002/qre.2381.
28. Cruz, F.R.B., Quinino, R.C., and Ho., Linda L. "Control charts for trac intensity monitoring of Markovian multiserver queues", Quality and Reliability Engineering International, 36(1), pp. 354-364 (2020). https://doi.org/10.1002/qre.2578.
29. Lima-Filho, L.M. de A., Pereira, T.L., de Souza, T.C., et al. "Inflated beta control chart for monitoring double bounded processes", Computers & Industrial Engineering, 136, pp. 265-276 (2019). https://doi.org/10.1016/j.cie.2019.07.017.
30. Lima-Filho, L.M. de A. and Bayer, F.M. "Kumaraswamy control chart for monitoring double bounded environmental data", Communications in Statistics - Simulation and Computation, 50(9), pp. 2513-2528 (2021). https://doi.org/10.1080/03610918.2019.1635159.
31. Chukhrova, N. and Johannssen, A. "Improved control charts for fraction non-conforming based on hypergeometric distribution", Computers & Industrial Engineering, 128, pp. 795-806 (2019). https://doi.org/10.1016/j.cie.2018.12.066.
32. Lemonte, A.J. "Improved point estimation for the Kumaraswamy distribution", Journal of Statistical Computation and Simulation, 81(12), pp. 1971-1982 (2011). https://doi.org/10.1080/00949655.2010.511621.
33. Bourguignon, M., Ghosh, I., and Cordeiro, G.M. "General results for the transmuted family of distributions and new models", Journal of Probability and Statistics, 2016, pp. 1-12 (2016). https://doi.org/10.1155/2016/7208425. 
Volume 32, Issue 8
Transactions on Industrial Engineering (E)
March and April 2025 Article ID:5167
  • Receive Date: 08 December 2020
  • Revise Date: 12 September 2021
  • Accept Date: 15 November 2021