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Abstract. In practice, the data related to rates and proportion may have excess of ones
wherein the beta distribution does not �t well. To deal with the in
ation of ones, this
article introduces unit Nadarajah and Haghighi distribution. Besides deriving statistical
properties of the proposed distribution, several estimation methods are discussed. In
particular, maximum likelihood estimation, least squares estimation, weighted least squares
estimation, maximum product of spacing, minimum spacing absolute distance estimation,
minimum spacing absolute log-distance estimation, Cram�er-Von-Mises, Anderson-Darling
method and right-tail Anderson-Darling method are considered. Using real data sets, it
is shown that the new distribution outperforms some well-known existing distributions.
Furthermore, the application of the proposed distribution in quality control is also
discussed. A control chart using unit Nadarajah and Haghighi distribution is constructed
and its performance is evaluated using the average run length.

1. Introduction

Recently many distributions have been introduced in
statistics to accommodate natural phenomena arising
from diverse �elds. In lifetime data analysis, Weibull
distribution has a special signi�cance and considered
as the benchmark model. Depending on the shape
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parameter, the Weibull distribution is 
exible to model
increasing, decreasing, and constant hazard function.
In addition, its closed form cumulative distribution
function also exists. However, to deal the data with
range between zero and one, beta distribution is more
appropriate and many absolutely continuous distribu-
tions have been used to generate 
exible distributions
to accommodate the data of proportion. For exam-
ple, Mazucheli et al. [1] introduced the unit-Weibull
distribution and showed its 
exibility over the beta
distribution. Similarly, the unit-gamma distribution
[2], unit logistic distribution [3], unit Lindley distribu-
tion [4], unit Gompertz distribution [5], Topp-Leone
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generated distributions [6], re
ected generalized Topp-
Leone power series distribution [7], etc., are introduced
to deal proportion data.

Nadarajah and Haghighi [8] introduced a new
extension of the exponential distribution, known as the
Nadarajah and Haghighi (NH) distribution, to deal
with the in
ation of zeros in absolutely continuous
data. Motivated by the application of NH distribution,
the aim of this article is to introduce Unit Nadarajah
and Haghighi (UNH) distribution. A distinct feature
of UNH distribution is that it is not constructed by
taking into account the positive part of the real line
and neither includes special functions nor additional
parameters in the formulation but it is constructed in
the unit interval. As a consequence, very few distribu-
tions with unit interval/�nite support are available in
the literature. However, while considering real life data
sets concerning percentages, proportions or fractions,
etc., one needs to consider values in a limited range
[9]. Likewise, survival time of units/items/subjects
of interest are normally greater than zero and also
the lifetime of units/items/subjects of interest cannot
arrive at in�nite point. In such cases, it is necessary to
use a bounded model [10,11]. Similarly, there are many
random variables and random processes that appear in
real life applications whose values are bounded both
at the lower and upper ends [12{16]. Besides, in the
context of reliability measurement, Gen�c [17] stated
that to get plausible results of reliability, it is better
to have models de�ned on the unit interval.

In the premise of the above, the UNH distri-
bution is suitable to handle the in
ation of ones in
the proportion data. For example, let compare the
mean proportion of days out of 30 wherein people
do some physical exercises for at least 30 minutes.
If people do exercise 30 out of 30 days, then data
will have in
ation of one and the response will be
highly skewed. In such situation, beta distribution
cannot be used because it does not accommodate the
occurrence of one. Similarly, comparing the proportion
of rain in two cities can also lead to in
ation of one
when both cities have the same amount of rain in
a given time. Besides introducing UNH, we esti-
mate the parameters of the UNH using nine di�erent
methods, including Maximum Likelihood Estimation
(MLE), Least Squares Estimation (LSE), Weighted
Least Square Estimation (WLSE), Maximum Product
of Spacing (MPS), Minimum Spacing Absolute Dis-
tance Estimation (MSADE), Minimum Spacing Ab-
solute Log-Distance Estimation (MSALDE), Cram�er-
Von-Mises (CVM), Anderson-Darling (AD), Percentile
Estimation (PCE), and Right-Tail Anderson-Darling
(RAD). In addition to estimation of the parameters
of the model, we also construct control charts using
UNH distribution to show its practical application for
monitoring data.

The rest of the article is organized as follows. Sec-
tion 2 presents the derivation of the UNH distribution
while properties including quantile function, moments,
entropies, order statistic are discussed in Section 3.
Section 4 discusses di�erent estimation methods to
estimate the unknown parameters of the proposed
distribution. The simulation study is presented in
Section 5. Control charts and their performance assess-
ment are presented in Section 6. Real data applications
are presented in Section 7, whereas concluding remarks
are given in Section 8.

2. UNH distribution

The main aim of the proposed model is to deal with the
in
ation of ones. To this end, the probability density
function and cumulative distribution function of the
NH distribution with two parameters �, � are de�ned
as:

f(x;�; �) = ��(1 + �x)��1 exp [1� (1 + �x)�] ;

x > 0; �; � > 0; (1)

F (x;�; �) = 1� exp [1� (1 + �x)�] ;

x > 0; �; � > 0: (2)

Now, using the transformation Y = exp(�X), we
obtain the following probability density function:

f(y;�; �) =
��
y

(1� �ln y)��1 exp [1� (1� �ln y)�] ;

0 < y < 1: (3)

Figure 1(a) represents the shape of the UNH distri-
bution which is decreasing and increasing for di�erent
values of the parameters. The parameters �; � > 0 are
non-negative where � is the shape parameter and � is
the rate parameter.

The expression of the CDF of the UNH distribu-
tion is:

F (y;�; �)=exp [1�(1��ln y)�] ; 0<y<1; (4)

whereas the graphical depiction is given in Figure 1(b).
The survival function is a function that provides

the probability that a particular object will survive
after a speci�c time. The term survival function
is extensively used in human mortality to show the
survival time of a patient beyond a speci�c time. In
reliability, it is used to show the performance of electric
devices beyond a speci�c time. The survival function
is given by:

S(y;�; �)=1�exp [1�(1��ln y)�] ; 0<y<1: (5)

The hazard function is the ratio of probability density
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Figure 1. PDF, CDF, survival, hazard, and reverse hazard function of the UNH distribution.

function and survival function. For the UNH, it is
obtained as:

h(y) =
��(1� �ln y)��1 exp [1� (1� �ln y)�]

y(1� exp [1� (1� �ln y)�])
: (6)

Figure 1(d) depicts the hazard function of the UNH dis-
tribution where it can be noticed that the distribution
has decreasing, increasing-decreasing hazard function
for di�erent choices of the parameters. This shows the

exibility of the UNH distribution.

The cumulative hazard is the sum of all the hazard
values to a particular time. The cumulative hazard
function of the UNH is given by:
H(y;�; �) =Z y

0

��(1� �ln y)��1 exp [1� (1� �ln y)�]
y [1� exp(1� (1� �ln y)�)]

dy: (7)

Similarly, the Reversed Hazard Function (RHF) is a
important tool in reliability. The RHF of the UNH
distribution is de�ned as:

r(y;�; �) =
f(y;�; �)
F (y;�; �)

; (8)

and depicted in Figure 1(e).

3. Statistical properties

This section derives some important statistical proper-
ties of the UNH distribution.

3.1. Quantile function
The quantile function of the UNH is obtained by
F (y) = u, where u � Uniform(0; 1), that is, u =
exp(1 � (1 � �log(y))�). The simpli�ed form of the
quantile function of the UNH is given by:

y = exp
�

1
�

(1� (1� ln(u))
1
� )
�
: (9)

The pth quantile function of UNH distribution is
de�ned as:

yp = exp
�

1
�

(1� (1� ln(p))
1
� )
�
: (10)

Using p = 0:5 in Eq. (10), one can obtain the median
of the UNH distribution as under:

y0:5 = exp
�

1
�

(1� (1� log(0:5))
1
� )
�
: (11)
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3.2. The moments
In this section, we derive the rth moment for the UNH
distribution. The �rst fourth moments are the most
important to describe the shape of the distribution.
Suppose the random variable Y follows the UNH (�; �),
then the rth moment is given as:

u0r =
Z 1

0
yrf(y; �; �)dy

=
Z 1

0
��yr�1(1��log y)��1 exp(1�(1��log y)�): (12)

Using the binomial expansion on [1� F (y)]i, i.e.,:

[1� F (y;�; �)]i =
iX

k=0

�
i
k

�
(�1)k[F (y)]k: (13)

We obtain:

(1� �log y)��1 =
��1X
i=1

(�1)i
�
�� 1
i

�
(�log y)i; (14)

u0r = ��
Z 1

0
yr�1

��1X
i=1

(�1)i
�
�� 1
i

�
(�log y)i exp(1

�(1� �log y)�)dy; (15)

u0r =
��1X
i=1

(�1)i
�
�� 1
i

�
��
Z 1

0
yr�1(�log y)i exp(1

�(1� �log y)�)dy: (16)

The rth moment of the UNH distribution cannot
be expressed analytically further but can be solved
numerically.

3.3. R�enyi entropy
The R�enyi entropy measures uncertainty of a random
variable and de�ned as:

R�(y) =
1

1� � log
�Z 1

0
(f(y))�dy

�
; (17)

R�(y) =
1

1� � log
�Z 1

0

(��)�

(y)�
(1� �ln y)�(��1)

exp (�(1� (1� �ln y))�)
�
dy: (18)

Using the Taylor series:
exp (�(1� (1� �ln y)�)) =

1X
i=0

(�)i(1� (1� �ln y)�)i

i!
; (19)

and

[1� (1� �ln y)�]i =
iX

k=0

�
i
k

�
(�1)k[(1� �ln y)�]k:

We get:

R�(y) =
1

1� � ln
�Z 1

0

(��)�

(y)�
(1� �ln y)�(��1)

1X
i=0

(�)i(1� (1� �ln y)�)i

i!

�
dy

=
1

1� � ln
� 1X
i=0

(�)i

i!

�Z 1

0

(��)�

(y)�
(1

��ln y)�(��1)(1� (1� �ln y)�)i
��
dy

=
1

1� � ln
� 1X
i=0

iX
k=0

�
i
k

�
(�1)k

(�)i

i!�Z 1

0

(��)�

(y)�
(1��ln y)�(��1)[(1��ln y)�]k

��
dy

=
1

1� � ln
� 1X
i=0

iX
k=0

�
i
k

�
(�1)k

(�)i

i!�Z 1

0

(��)�

(y)�
(1� �ln y)(�(��1)�k�)

��
dy: (20)

Again using:

(1� �ln y)(�(��1)�k�) =
�(��1)�k�X

s=0

�
�(�� 1)� k�

s

�
(�1)s[� log y]s: (21)

We obtain:

R�(y)=
1

1�� ln
� 1X
i=0

iX
k=0

�(��1)�k�X
s=0

�
�(�� 1)� k�

s

�
�
i
k

�
(�)i

i!
(�1)s(�1)k(��)�

�Z 1

0
(y)��(� ln y)s

��
dy: (22)

3.4. Stress and strength modeling
Suppose Y1 and Y2 are two independent continuous
random variables, where Y1 � UNH(�1; �1) and Y2 �
UNH(�2; �2). Then, the stress and strength, denoted
by R, is determined as:

R = P (y1 > y2) =
Z 1
�1

fy1(y)Fy2(y)dy: (23)
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R = P (y1 > y2) =
Z 1

0

�1�1

y
(1� �1ln y)�1�1

exp(1�(1��1ln y)�1) exp(1�(1��2ln y)�2)dy:

=
Z 1

0

�1�1

y
(1� �1ln y)�1�1

exp(2�(1��1ln y)�1�(1��2ln y)�2)dy: (24)

Using:

[1��1ln y]�1�1 =
�1�1X
k=0

�
�1�1
k

�
(�1)k(�1ln y)k: (25)

R = P (y1 > y2) = �1�1

�1�1X
k=0

�
�1 � 1
k

�
(�1)k

Z 1

0
y�1(�1ly)k exp(2� (1� �1ln y)�1

�(1��2ln y)�2)dy:

Since:
exp(2� (1� �1ln y)�1 � (1� �2ln y)�2) =

1X
i=0

(2�(1��1ln y)�1�(1��2ln y)�2)i

i!
; (26)

R = P (Y1 > Y2) =
�1�1

i!

1X
i=0

iX
k=0

�
i
k

�
(�1)k

Z 1

0
y�1 (�1ln y)k (2i � (1� �1ln y)i�1

�(1� �2ln y)i�2)dy: (27)

Again using:

[1� �1log y]i�1 =
i�1X
j=0

�
i�1

j

�
(�1)j(�1ln y)j :

R = P (y1 > y2) = (�1)j(�1)k(�1)j
�1�1

i!
i�1X
j=0

i�2X
j=0

1X
i=0

iX
k=0

�
i�1

j

��
i�2

j

��
i
k

�
�

2i�1
k
Z 1

0
y�1 (ln y)k dy

�
�
�
�2
k+j

Z 1

0
y�1 (ln y)k+j dy

�
�
�
�1
k�2

j
Z 1

0
y�1(ln y)k+jdy

�
: (28)

3.5. Order statistics
In this section, we de�ne the probability density func-
tion of the ith order statistic of the UNH distribution.
Suppose a sample of size k, Y(1); :::; Y(k), be the order
statistic obtained from a random sample Y1; :::; Yk of
size k from a continuous population with distribu-
tion function F (y;') and probability density function
f(y;'). Then, the probability density function of y(i)
is given by:

fY (i)(y) =
k!

(i� 1)!(k � i)!fY (y)[F (y;')]i�1

[1� F (y;')]k�i (29)

where i = 1; 2; :::; k. For the UNH distribution, we
have:

fY(i)(y) = k!
(i� 1)!(k � i)! (

��
y

(1� �ln y)��1

exp(1� (1� �ln y)�))
�
exp(1� (1��ln y)�)

�i�1

[1� exp(1� (1� �ln y)�)]k�i:
(30)

While the probability density function of the largest
order statistic y(k) is given by:

fY(k)(y) =
��k
y

(1� �ln y)��1 exp(1� (1� �ln y)�)

[exp(1� (1� �ln y)�)]k�1; (31)

and the probability density function of the smallest
order statistic y(1) is given by:

fY (1)(y) =
��k
y

(1� �ln y)��1 exp(1� (1� �ln y)�)

[1� exp(1� (1� �ln y)�)]k�1: (32)

4. Estimation of parameters

In this section, we discuss the unknown parameters
estimation of the UNH distribution using the MLE,
LSE, PCE, MPS, MADE, MSALDE, CVM, AD, and
RAD methods [18,19].

4.1. MLE method
Suppose Y1; Y2; :::; Yn be a simple random sample from
the UNH distribution. Then, the likelihood function is
given by:

L(�; �;y) =
nY
i=1

f(yi; �; �) =
nY
i=1

��
yi

(1� �log yi)��1

exp(1� (1� �log yi)�): (33)

The log-likelihood function is given by:
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lnL(�; �;y) = nln(��)�
nX
i=1

ln(yi)

+(�� 1)
nX
i=1

ln(1� �ln yi) + n

�
nX
i=1

(1� �ln yi)
�: (34)

It follows that the maximum likelihood estimators
MLEs of the parameters are obtained by di�erentiating
the log-likelihood function with respect to the parame-
ters � and � and then equating the resulting equations
to zero.

@lnL(�; �;y)
@�

=
n
�

+
nX
i=1

ln(1� �ln yi)

�
nX
i=1

(1� �ln yi)�ln(1� �ln yi) = 0; (35)

@lnL(�; �;y)
@�

=
n
�

+ (�� 1)
nX
i=1

(ln yi)
(1� �ln yi)

+�
nX
i=1

(ln yi)(1� �ln yi)
��1 = 0: (36)

The MLEs of the UNH distribution cannot be obtained
in closed forms. Thus, it needs to be solved numerically
for the parameters � and �.

4.2. Least Squares Estimators (LSE)
Let Y1; :::; Yn is a random sample of size n from the
distribution function F (:) and Y(i) < ::: < Y(n) denote
the corresponding order sample. The ordinary least
squares estimators can be obtained by minimizing:

Z(�; �) =
nX
i=1

�
F (y(i))� E(F (y(i)))

�2 : (37)

Using:

E(F (Y(i))) =
i

n+ 1
: (38)

We get:

Z(�; �) =
nX
i=1

�
F (Y(i))� i

n+ 1

�2

: (39)

Therefore, in the case of the UNH distribution, the
ordinary least squares estimators of � and �, say �LSE
and �LSE , respectively, can be obtained by minimizing:

Z(�; �) =
nX
i=1

�
exp(1� (1� �ln y(i))�)� i

n+ 1

�2

:
(40)

Di�erentiate Eq. (40) with respect to the unknown pa-
rameters � and � and equating the resulting equations

to zero, one can get the LSE estimators.

@Z(�; �)
@�

= 2
nX
i=1

�
exp(1� (1� �ln y(i))�)� i

n+ 1

�
exp(1� (1� �ln y(i))�)�

(1� �ln y(i))
��1ln y(i) = 0; (41)

@Z(�; �)
@�

= 2
nX
i=1

�
exp(1� (1� �ln y(i))�)� i

n+ 1

�
exp(1� (1� �ln y(i))�)(1� �ln y(i))

� ln

(1� �ln y(i)) = 0: (42)

As these equations cannot be solved analytically, the
non-linear equations need to be solved numerically.
The weighted least squares estimators of the unknown
parameters can be obtained to minimizing:

Z(�; �) =
nX
i=1

wi
�
F (Y(i))� E(F (Y(i)))

�2 : (43)

Using:

E(F (Y(i))) =
i

n+ 1
: (44)

We get:

Z(�; �) =
nX
i=1

wi
�
F (Y(i))� i

n+ 1
�2: (45)

The weight wi are equal to:

1
V (y(i))

=
(n+ 1)2(n+ 2)
j(n� j + 1)

:

Therefore, in the case of the UNH distribution, the
weighted least squares estimators of � and �, say
�̂WLSE and �̂WLSE , respectively, can be obtained by
minimizing:

Z(�; �)=
nX
i=1

wi
�
exp(1�(1��ln y(i))�)� i

n+1

�2

;
(46)

that is, di�erentiate with respect to the unknown
parameters � and � and equating to zero, we get the
following equations:

@Z(�; �)
@�

=2
nX
i=1

wi�
exp

�
1� (1� �ln y(i))�

�� i
n+ 1

�
exp

�
1� (1� �ln y(i))�

�
��

1� �ln y(i)
���1ln y(i) = 0; (47)
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@Z(�; �)
@�

=2
nX
i=1

(n+ 1)2(n+ 2)
j(n� j + 1)�

exp(1� �1� �ln y(i)
��)� i

n+ 1

�
exp
�

1� �1� �ln y(i)
����1� �ln y(i)

��
ln
�
1� �ln y(i)

�
= 0: (48)

The above equations need to be solved numerically.

4.3. PCE method
If the cumulative distribution function have a closed
form, then one can estimate the unknown parameter
by �tting a straight line to the percentile points. In
our case:

F (y;�; �) = exp (1� (1� �log y)�) ; (49)

therefore:

y = exp
�

1
�

�
1� (1� log(u))

1
�

��
: (50)

Let Y1; :::; Yn is a random sample of size n from the
distribution function F(.) and Y(i) < ::: < Y(n) denote
the corresponding ordered sample. The estimate of �
and � can be obtained by minimizing:

Z(�; �)=
nX
i=1

�
y(i)�exp

�
1
�

(1�(1�ln(ui))
1
� )
��2

; (51)

that is, di�erentiate with respect to � and �:

@Z(�; �)
@�

=
nX
i=1

�
y(i) � exp

1
�

�
1� (1� ln(ui))

1
�

��
1
�

exp
�

1
�

(1� (1� ln(ui))
1
� )
�

(1� ln(ui))
1
� ln (1� ln(ui)) = 0; (52)

@Z(�; �)
@�

=
nX
i=1

�
y(i) � exp

�
1
�

(1� (1� ln(ui))
1
� )
��

exp
1
�

(1� (1� ln(ui))
1
� )

1
(�)2 (1�(1�ln(ui))

1
� )=0; (53)

where ui = i
n+1 .

4.4. MPS method
For the method of MPS [20,21], we de�ne:

Dj(�; �) =F (yj:kj�; �)� F (yj�1:kj�; �);

j = 1; 2; :::; k: (54)

Let �̂MPS and �̂MPS are the estimators obtained using
the MPS for the UNH distribution parameters � and
�. The geometric mean of the spacings is de�ned as:

G(�; �) =

24k+1Y
j=1

Dj(�; �)

35 1
k+1

; (55)

or maximizing the function:

H(�; �) =
1

k + 1

k+1X
j=1

lnDj(�; �); (56)

@H(�; �)
@�

=
1

k + 1

k+1X
j=1

1
Dj(�; �)

�
!1(yj:kj�; �)

�!1(yj�1:kj�; �)
�

= 0; (57)

@H(�; �)
@�

=
1

k + 1

k+1X
j=1

1
Dj(�; �)

�
!2(yj:kj�; �)

�!2(yj�1:kj�; �)
�

= 0; (58)

!1(yj:kj�; �) = exp(1� (1� � ln yj:k)�)

(1� � ln yj:k)� ln(1� � ln yj:k); (59)

!2(yj:kj�; �) = exp(1� (1� � ln yj:k)�)�

(1� � ln yj:k)��1(ln yj:k): (60)

Maximizing H(�; �) is as e�cient as the MLE and the
MPS estimators are consistent under more common
conditions than the MLE estimators.

4.5. MSADE method
The method of MSADE [22] and the authors showed
that parameters estimation by MSADE is as e�cient as
MLE. Furthermore, the MSADE are consistent under
more 
exible condition than the MLE estimators. We
de�ne:

Dj(�; �) = F (yj:kj�; �)� F (yj�1:kj�; �);

j = 1; 2; :::; k: (61)

Then, �̂MSADE and �̂MSADE , are the UNH distribu-
tion parameters � and � are obtained by minimizing
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the following function with respect to � and �.

T (�; �) =
k+1X
j=1

����Dj(�; �)� 1
n+ 1

����; (62)

@T (�; �)
@�

=
k+1X
j=1

Dj(�; �)� 1
n+1

j Dj(�; �)� 1
n+1 ) j

�
!1(yj:kj�; �)

�!1(yj�1:kj�; �)
�

= 0; (63)

@T (�; �)
@�

=
k+1X
j=1

Dj(�; �)� 1
n+1

j Dj(�; �)� 1
n+1 ) j

�
!2(yj:kj�; �)

�!2(yj�1:kj�; �)
�

= 0; (64)

where:

!1(yj:kj�; �) = exp(1� (1� � ln yj:k)�)

(1� � ln yj:k)� ln(1� � ln yj:k); (65)

!2(yj:kj�; �) = exp(1� (1� � ln yj:k)�)�

(1� � ln yj:k)��1(ln yj:k): (66)

4.6. MSALDE method
The MSALDE are obtained by minimizing T(�,�) as
follows:

T (�; �) =
k+1X
j=1

����lnDj(�; �)� ln
1

n+ 1

����; (67)

@T (�; �)
@�

=
k+1X
j=1

lnDj(�; �)� ln 1
n+1

j lnDj(�; �)� ln 1
n+1 ) j

1
Dj(�; �)

[!1(yj:kj�; �)� !1(yj�1:kj�; �)] = 0; (68)

@T (�; �)
@�

=
k+1X
j=1

lnDj(�; �)� ln 1
n+1

j lnDj(�; �)� ln 1
n+1 ) j

1
Dj(�; �)

[!2(yj:kj�; �)� !2(yj�1:kj�; �)] = 0; (69)

where

!1(yj:kj�; �) = exp(1� (1� � ln yj:k)�)

(1� � ln yj:k)� ln(1� � ln yj:k); (70)

!2(yj:kj�; �) = exp(1� (1� � ln yj:k)�)�

(1� � ln yj:k)��1(ln yj:k): (71)

4.7. CVM method
To encourage our decision of CVM estimators, Mac-
Donald [23] presented an empirical proof that the bias
of these estimators is smaller than the other small
distance type estimators. The CVM estimators �̂CVM
and �̂CVM of the UNH distribution parameters � and
� are obtained by minimizing the following function:

C(�; �) =
1

12n
+

nX
j=1

�
F (yj:nj�;�)� 2j � 1

2n

�2

: (72)

These estimators can also be obtained by solving the
following non-linear equations:

@C(�; �)
@�

=
nX
i=1

�
exp(1� (1� � ln yj:k)�)� 2j � 1

2n

�
(1�� ln yj:k)� ln(1�� ln yj:k)=0; (73)

@C(�; �)
@�

=
nX
i=1

�
exp(1�(1�� ln yj:k)�)� 2j � 1

2n

�
�

(1�� ln yj:k)��1(ln yj:k) = 0: (74)

4.8. AD and RTADE methods
In this section, we de�ne the method of AD estimation
for the UNH distribution as:

A(�; �) = �k � 1
k

kX
j=1

(2j � 1)flnF (yj:kj�; �)

+ ln �F (yk+1�j:kj�; �)g: (75)

These estimators can also be obtained by solving non-
linear Eqs. (76){(79) are shown in Box I. Similarly, the
RTADE estimators �̂RTADE and �̂RTADE of the UNH
parameters � and � are obtained by minimizing:

R(�; �) =
k
2
� 2

kX
j=1

lnF (yj:kj�; �)

�1
k

kX
j=1

(2j � 1) ln �F (yk+1�j:kj�; �): (80)

These estimators can also be obtained by solving non-
linear Eqs. (81){(82) are shown in Box II.

5. Simulation study

The performance of ten di�erent estimation methods is
compared using a comprehensive simulation study. For
all methods, we computed biases, mean squared errors,
average absolute di�erence between the theoretical
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@A(�; �)
@�

=
kX
j=1

(2j � 1)
exp(1� (1� �ln(yj:k))�)(1� �ln(yj:k))� ln(1� �ln(yj:k))

exp(1� (1� �ln yj:k)�)

�
kX
j=1

(2j � 1)
exp(1� (1� �ln(yj:k))�)(1� �ln(yj:k))� ln(1� �ln(yj:k))

(1� exp(1� (1� �ln(yj:k))�))
= 0; (76)

@A(�; �)
@�

=
kX
j=1

(2j � 1)
exp(1� (1� �ln(yj:k))�)�(1� �ln yj:k)��1 ln(yj:k)

exp(1� (1� �ln(yj:k))�)

�
kX
j=1

(2j � 1)
exp(1� (1� �ln(yj:k))�)�(1� �ln(y))��1 ln(yj:k)

(1� exp(1� (1� �ln(yj:k))�))
= 0; (77)

@F (�; �)
@�

= exp(1� (1� � ln yj:k)�)(1� � ln yj:k)� ln(1� � ln yj:k); (78)

@F (�; �)
@�

= exp(1� (1� � ln yj:k)�)�(1� � ln yj:k)��1(ln yj:k): (79)

Box I

@R(�; �)
@�

= �2
kX
j=1

exp(1� (1� �ln(yj:k))�)(1� �ln(yj:k))� ln(1� �ln(yj:k))
exp(1� (1� �ln(yj:k))�)

+
1
k

kX
j=1

(2j � 1)
exp(1� (1� �ln(yj:k))�)(1� �ln(yj:k))� ln(1� �ln(yj:k))

1� exp(1� (1� �ln(yj:k))�)
= 0; (81)

@R(�; �)
@�

= �2
kX
j=1

exp(1� (1� �ln(yj:k))�)�(1� �ln(yj:k))��1ln(yj:k))
exp(1� (1� �ln(yj:k))�)

+
1
k

kX
j=1

(2j � 1)
exp(1� (1� �ln(yj:k))�)�(1� �ln(yj:k))��1ln(yj:k))

(1� exp(1� (1� �ln(yj:k))�))
= 0: (82)

Box II

and empirical estimate of the distribution functions
(Dabs), and the maximum absolute di�erence between
the theoretical and empirical distribution functions
(Dmax). The experiments were repeated N=10000
times by taking samples of sizes n = 20,40,60,80
and 100, with (�; �) = (0.5,0.5), (0.5,2.0), (1.5,2.0),
(1.5,0.5), (3.5,2.0), (3.0,0.5).

It is noticed from Tables 1{3 that the biases and
Root Mean Square Error (RMSE) of � and � decrease

when sample size increased for all methods of esti-
mation. The average absolute di�erence between the
theoretical and empirical estimate of the distribution
functions (Dabs) is smaller than the maximum absolute
di�erence between the theoretical and empirical distri-
bution functions (Dmax) for all methods of estimation.
The simulation results suggest that the WLS perform
better in terms of biases and RMSEs. The second
better performing estimators is the MPS estimators.
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Table 1. Simulation results for �=0.5 and �=0.5.

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD

20 Bias (�) 0.7667 0.4004 0.0942 -0.3853 -0.0851 1.7878 7.41510 0.5135 0.6476 3.3889

RMSE (�) 2.4096 0.4003 0.2191 0.7124 0.2212 3.0507 8.8259 1.0175 3.9198 11.52810

Bias (�) 0.3952 167.37710 0.8137 -0.4003 -0.0431 1.32348 7.8929 0.5464 0.6665 0.7926

RMSE (�) 0.9572 177.91110 1.5205 0.4001 1.9436 2.7067 9.2069 1.3023 1.4064 2.7608

Dabs 0.1661 0.2017 0.1684 0.3108 0.1672 0.4489 0.65710 0.1685 0.1683 0.1696

Dmax 0.2664 0.3117 0.2491 0.7198 0.2502 0.7849 0.95810 0.2705 0.2603 0.2776

Total 223 417 202 274:5 141 489 5710 274:5 296 458

40 Bias (�) 0.2464 -0.4006:5 0.1152 -0.4006:5 -0.09641 2.0099 8.75210 0.2955 0.1903 0.8088

RMSE (�) 0.6377 0.4003:5 0.1952 0.4003:5 0.1401 3.6398 10.08510 0.5856 0.5725 3.9159

Bias (�) 0.3781 162.44410 0.5417 -0.4002 -0.5066 1.6298 9.3819 0.4263 0.4894 0.5025

RMSE (�) 0.6542 167.24010 0.8375 0.4001 1.0567 3.1818 10.5319 0.80143 0.8124 1.0326

Dabs 0.1662 0.1997 0.1685 0.3108 0.1651 0.4609 0.65910 0.1684 0.1673 0.1686

Dmax 0.2564 0.3127:0 0.2502 0.7618 0.2471 0.8359 0.97310 0.2625 0.2543 0.2666

Total 202 448 234 296 171 519 5810 265 223 407

60 Bias (�) 0.1694 -0.4007:5 0.1202 -0.4007:5 -0.0961 2.2589 9.53510 0.2175 0.1493 0.3356

RMSE (�) 0.2894 0.4006:5 0.1822 0.4006:5 0.1221 3.9959 10.81110 0.3985 0.2503 1.3918

Bias (�) 0.3741 161.03610 0.4626 -0.4003 -0.6387 1.8758 10.2589 0.3952 0.4394 0.4395

RMSE (�) 0.5552 164.13010 0.6605 0.4001 0.9107 3.5288 11.2949 0.6544 0.6523 0.7856

Dabs 0.1672 0.1997 0.1674 0.3108 0.1651 0.4739 0.66010 0.1675 0.1673 0.1686

Dmax 0.2534 0.3127 0.2502 0.7778 0.2461 0.8599 0.97910 0.2585 0.2523 0.2616

Total 171 488 214 346 182 529 5810 265 193 377

80 Bias (�) 0.1454 -0.4007:5 0.1232 -0.4007:5 -0.0941 2.9159 9.74410 0.1885 0.1383 0.2556

RMSE (�) 0.2083 0.4006:5 0.1752 0.4006:5 0.1131 4.4379 10.95510 0.3165 0.2094 1.0298

Bias (�) 0.3711 159.93210 0.4216 -0.4004 -0.7077 2.4688 10.4599 0.3722 0.4095 0.3953

RMSE (�) 0.5072 162.20610 0.5715 0.4001 0.8757 4.0438 11.4309 0.5694 0.5683 0.6506

Dabs 0.1672 0.1997 0.1674 0.3108 0.1661 0.5229 0.66110 0.1675 0.1673 0.1676

Dmax 0.2514 0.3127 0.2512 0.7868 0.2461 0.8909 0.98210 0.2565 0.2563 0.2596

Total 171 488 213:5 356:5 182 529 5810 265 213:5 356:5

100 Bias (�) 0.1374 -0.4007:5 0.1242 -0.4007:5 -0.0921 3.5459 9.83610 0.1725 0.1333 0.2076

RMSE (�) 0.1863 0.4006:5 0.1692 0.4006:5 0.1081 4.7619 11.03610 0.2725 0.1914 0.4798

Bias (�) 0.3692 159.55710 0.4016 -0.4005 -0.7467 2.9868 10.4849 0.3621 0.3954 0.3773

RMSE (�) 0.4822 161.40910 0.5285 0.4001 0.8727 4.3248 11.4529 0.5253 0.5274 0.5906

Dabs 0.1672 0.1997 0.1674 0.3108 0.1661 0.5719 0.66010 0.1675 0.1673 0.1676

Dmax 0.2513 0.3127 0.2502 0.7918 0.2461 0.9169 0.98210 0.2555 0.2514 0.2576

Total 161 488 213 367 182 529 5810 245 224 356
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Table 2. Simulation results for �=3.5 and �=0.5

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD

20 Bias (�) 3.7595 -3.4003 -0.9121 5.9607 1.0084 -3.4002 -3.4009 4.1576 9.0038 12.33810

RMSE (�) 8.1156 3.4002 2.2821 6.0747 6.6804 3.4003 3.4008 9.3255 25.4059 27.82810

Bias (�) 1.4826 1509.38310 3.2582 0.2887 3.2923 -0.4008 -0.4009 2.5145 2.9224 4.1431

RMSE (�) 3.2071 1598.42310 5.4115 0.3422 5.2384 0.4003 0.4009 4.8146 5.9907 14.4148

Dabs 0.1722 0.2108 0.1684 0.4081 0.1703 0.33110 0.3319 0.1686 0.1695 0.1667

Dmax 0.2676 0.3388 0.2522 0.6051 0.2533 0.79810 0.7989 0.2615 0.2594 0.2597

Total 336 398:5 191 336 292 313:5 313:5 336 398:5 4310

40 Bias (�) 1.7744 -3.4006 -0.9543 -0.7072 -0.1821 -3.4007:5 -3.4007:5 2.5005 3.5129 6.51510

RMSE (�) 6.3907 3.4002 2.0641 4.4035 4.9366 3.4003:5 3.4003:5 7.7478 15.0729 18.59510

Bias (�) 1.3113 1479.76810 2.2006 4.7549 2.3237 -0.400 1:5 -0.4001:5 1.9734 2.0615 2.5458

RMSE (�) 2.1923 1529.96910 3.3536 5.7459 3.2954 0.4001:5 0.4001:5 3.3577 3.3465 4.8108

Dabs 0.1673 0.2097 0.1674 NaN10 0.1686 0.3318:5 0.3318:5 0.1672 0.1685 0.1661

Dmax 0.2606 0.3397 0.2542 NaN10 0.2521 0.8548:5 0.8548:5 0.2585 0.2563 0.2584

Total 263 429 221 4510 252 315 315 315 367 418

60 Bias (�) 0.6272 -3.4007 -1.0494 -0.3581 -0.7563 -3.4008:5 -3.4008:5 1.4166 1.3085 3.81510

RMSE (�) 4.8897 3.4003 1.9512 1.5291 3.8676 3.4004:5 3.4004:5 6.5098 9.8879 13.86610

Bias (�) 1.2663 1470.29910 1.8786 11.3979 2.0027 -0.4001:5 -0.4001:5 1.7787 1.8196 2.1678

RMSE (�) 1.8613 1509.41510 2.6475 11.7109 2.6174 0.4001:5 0.4001:5 2.7887 2.6626 3.6128

Dabs 0.1661 0.2097 0.1674 0.58510 0.1686 0.3318:5 0.3318:5 0.1673 0.1675 0.1672

Dmax 0.2574 0.3407 0.2542 0.8428 0.2511 0.8789:5 0.8789:5 0.2576 0.2553 0.2575

Total 201 4410 232 388 273 346 346 346 334 439

80 Bias (�) -0.0571 -3.4009 -1.1095 1.1336 -1.0614 -3.4009 -3.4009 0.7433 0.2392 2.4387

RMSE (�) 4.0847 3.4005 1.875 2 1.4111 3.1833 3.4005 3.4005 5.6198 7.1749 11.09710

Bias (�) 1.2473 1466.14210 1.7136 16.7299 1.8467 -0.4001:5 -0.4001:5 1.6574 1.6845 1.9248

RMSE (�) 1.7103 1497.99210 2.2954 16.7299 2.2995 0.4001:5 0.4001:5 2.4357 2.3106 2.9828

Dabs 0.1651 0.2097 0.1674 0.63710 0.1676 0.3318:5 0.3318:5 0.1673 0.1675 0.1672

Dmax 0.2554 0.3397 0.2532 0.93810 0.2511 0.8948:5 0.8948:5 0.2566 0.2553 0.2565

Total 191 4810 232 459 263 346:5 346:5 315 304 408

100 Bias (�) -0.2963 -3.4009 -1.1564 2.4117 -1.1975 -3.4009 -3.4009 0.2832 -0.2431 1.5806

RMSE (�) 3.5597 3.4005 1.8261 2.4652 2.7663 3.4005 3.4005 4.9728 5.8489 9.34710

Bias (�) 1.2463 1460.60010 1.6306 21.3449 1.74417 -0.4001:5 -0.4001:5 1.5994 1.6185 1.8238

RMSE (�) 1.6313 1491.26110 2.1164 21.3729 2.1175 0.4001:5 0.4001:5 2.2507 2.1386 2.7088

Dabs 0.1661 0.2097 0.1674 0.65010 0.1676 0.3318:5 0.3318:5 0.1673 0.1675 0.1672

Dmax 0.2554 0.3407 0.2532 0.96410 0.2521 0.9038:5 0.9038:5 0.2565 0.2543 0.2566

Total 211:5 4810 211:5 479:0 273:0 346:5 346:5 294:5 294:5 408
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Table 3. Simulation results for �=1.5 and �=0.5

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD

20 Bias (�) 3.2197 -1.4005 -0.1161 10.1289 0.6322 -1.3684 -1.2923 2.2916 5.5828 11.30110

RMSE (�) 6.6007 1.4002 0.7851 10.3378 2.9715 1.4793 1.8904 4.8506 18.0819 25.59510

Bias (�) 0.6984 588.09810 1.6487 -0.2431 1.6948 -0.3693 -0.2832 1.2025 1.3746 1.8639

RMSE (�) 1.6464 635.29510 2.9208 0.2701 2.8987 0.6702 1.4663 2.6065 2.8666 6.5599

Dabs 0.1695 0.2097 0.1682 0.38510 0.1696 0.3278 0.3289 0.1683 0.1684 0.1671

Dmax 0.2676 0.3427 0.2511 0.5848 0.2522 0.7869 0.78610 0.2654 0.2603 0.2665

Total 336 419 201 378 304 292:5 315 292:5 367 4410

40 Bias (�) 1.7354 -1.4006 -0.0841 12.95110 0.1172 1.9698 -1.3965 1.3123 1.7347 5.2709

RMSE (�) 4.2316 1.4002 0.6661 13.1389 1.8014 6.6337 1.4243 3.5275 8.4838 15.04510

Bias (�) 0.6493 564.15910 1.0766 -0.2921 1.1718 2.493 9 -0.3962 0.9144 0.9855 1.1487

RMSE (�) 1.1343 600.15410 1.6515 0.3001 1.6817 6.3089 0.4862 1.6516 1.6274 2.2718

Dabs 0.1661 0.2087 0.1674 0.3999 0.1686 0.43110 0.3288 0.1675 0.1673 0.1672

Dmax 0.2594 0.3507 0.2532 0.6098 0.2511 0.86010 0.8419 0.2615 0.2573 0.2626

Total 212 428:5 191 387 283:5 5310 295 283:5 306 428:5

60 Bias (�) 0.5893 -1.4007:5 -0.0912 11.19710 -0.0771 -1.4006 -1.4007:5 0.7705 0.6044 2.9859

RMSE (�) 2.5366 1.4004:5 0.5971 11.40810 1.1912 1.4003 1.4004:5 2.6577 4.4948 10.4059

Bias (�) 0.6413 553.10510 0.9186 3.9939 1.0148 -0.3991 -0.4002 0.8324 0.8785 0.9867

RMSE(�) 0.9633 587.75910 1.2974 5.0859 1.3336 0.4122 0.4001 1.3477 1.2985 1.7138

Dabs 0.1661 0.2087 0.1674 0.58110 0.1686 0.3279 0.3278 0.1673 0.1675 0.1672

Dmax 0.2564 0.3557 0.2532 0.8528 0.2501 0.8649 0.86410 0.2585 0.2553 0.2606

Total 202 469 191 5610 243 304:5 337 316 304:5 418

80 Bias (�) 0.2574 -1.4007 0.0961 8.63410 0.1612 4.7289 -1.3986 0.4995 0.2143 1.8848

RMSE (�) 1.6415 1.4003 0.550 1 8.79410 0.8542 7.6348 1.4104 2.14486 2.6247 7.7129

Bias (�) 0.6422 542.22810 0.8375 19.5539 0.9387 4.5988 -0.3981 0.7813 0.8174 0.8816

RMSE (�) 0.8842 577.89110 1.1253 19.7719 1.1715 8.0418 0.4371 1.1746 1.1284 1.4167

Dabs 0.1661 0.2077 0.1672 0.66110 0.1676 0.5689 0.3288 0.1673 0.1675 0.1674

Dmax 0.2544 0.3607 0.2532 0.98310 0.2501 0.9129 0.8798 0.2575 0.2543 0.2586

Total 182 448 141 5810 233 519 285:5 285:5 264 407

100 Bias (�) 0.1283 -1.4007:5 -0.1022 11.45410 -0.1854 5.8319 -1.4007:5 0.3345 0.1011 1.2706

RMSE (�) 1.1933 1.4004:5 0.5181 11.54110 0.6762 7.4809 1.4004:5 1.7996 2.1297 6.0108

Bias (�) 0.6402 542.88510 0.7985 24.7939 0.8877 5.3758 -0.4001 0.7583 0.7864 0.8396

RMSE (�) 0.8402 576.60010 1.0383 24.9699 1.0795 6.8228 0.4001 1.0856 1.0454 1.2867

Dabs 0.1661 0.2077 0.1672 0.66410 0.1676 0.6099 0.3278 0.1673 0.1674 0.1675

Dmax 0.2544 0.3597 0.2532 0.99010 0.2501 0.9289 0.8888 0.2565 0.2543 0.2576

Total 151:5 468 151:5 5810 254:0 529 306 285 233 387
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Moreover, the WLS, MPS, MLE, AD, CVM, PCE
estimators are among the good estimators for the UNH
distribution. The LSE does not perform well. It is
also con�rmed that the performance of the MLE and
PCE estimators are the same, as expected, and the
performance of the CVM and AD estimators is the
same. The additional Tables S1-S3 are given in the
supplementary data �le.

6. TBE control chart and performance
assessment

Time-Between-Events (TBE) control charts are fre-
quently used in reliability and other system related
applications. A TBE chart monitors the inter-arrival
times so it does not require sampling intervals [24].
The defects or nonconforming items from a manu-
facturing system are generally modeled by a Poisson
process and Poisson Cumulative Sum (CUSUM) and
Shewhart c charts are the examples of such control
charts. Alternatively, we could use control charts
that are based on inter-arrival times. These inter-
arrival times are assumed to be independent and
identically distributed exponential random variables.
The exponential CUSUM chart and exponential chart
are the two examples of these type of charts [25]. The
exponential chart is preferred because one does not
have to wait for the �xed time period as it plots the
information immediately as soon it is obtained. A
comprehensive overview of these charts is provided by
Ali et al. [26].

The aim of this section is to introduce control
charts to monitor the TBE data measured between
zero and one scale. Moreover, as the UNH provides
better �t in the case of in
ation of ones in the data,
the proposed TBE chart is also suitable to monitor
such data. The recent contributions to monitor data
of rates and proportion can be seen in [27{31] and the
references cited therein.

Let � denotes the false alarm probability. To
derive the control limits of the proposed chart, we
equate F (x) = �=2 and 1��=2 to obtain the two-sided
control chart. Similarly, equate F (x) = � or 1 � � to
obtain the lower or upper-sided control limit of the one-
sided chart. The simpli�ed expressions of the ARL and
control limits for the one-sided charts are given as:

LCL = exp
�

(1=�0)(1� (1� log �)(1=�0))
�
;

ARLL = 1= exp (1� (1� � log(LCL))�) ;

UCL = exp
�

(1=�0)(1� (1� log(1� �))(1=�0))
�
;

ARLU = 1= (1� exp(1� (1� � log(UCL))�)) : (83)

Similarly, the control limits and ARL expressions for
the two-sided control charts are given as:

LCL = exp
�

(1=�0)(1� (1� log(�=2))(1=�0))
�
;

UCL = exp
�

(1=�0)(1� (1� log(1� (�=2)))(1=�0))
�
;

ARLL[U = 1=
�

exp (1� (1� � log(LCL))�)

+1�exp(1�(1�� log(UCL))�)
�
: (84)

The most common measure to access the performance
of a control chart is the Average Run Length (ARL).
It is de�ned to be the average number of points
(samples) plotted until we observe a signal indicating
that the process is out-of-control. The in-control ARL
(ARL0) and the out-of-control ARL (ARL1) are the
two types of ARL. Ideally, we should have a large
value of (ARL0) so that we do not have to make
unnecessary adjustments to the process while a small
value of (ARL1) so that a shift in the process may be
detected quickly. Further, for the Shewhart structure,
the ARL is known to have geometric distribution and
thus ARL = 1=p, where \p" is the parameter of
geometric distribution which represents the probability
of shift detection.

Although the ARL is widely used for performance
evaluation, it is to be noted that the variance of the
ARL distribution is large and in some cases, nearly
equal to the mean. This implies that there would be
large 
uctuations in the frequencies of false alarms. To
overcome this drawback, the Coe�cient of Variation
(CV) of the run length distribution can be utilized
because of the fact that the CV values do not 
uctuate
drastically with the increasing/decreasing magnitude
of shifts. In addition, the CV values can directly be
compared especially when the ARL values do not di�er
greatly from each other.

We conducted the ARL analysis of UNH distri-
bution for di�erent values of shape and scale param-
eters along with some additional quantities including
CV, �rst, second, and third quartile (Q1, Q2 and
Q3). It is worth mentioning that the ARL0 value
for all combinations of in-control rate (�0) and shape
(�0) parameters, assuming level of signi�cance to be
0.0027, is 370.370. Furthermore, we computed the
ARL values of upper, lower and two-sided control
charts for all the considered combination of in-control
values of the parameters. To be more speci�c, in
our study, we used �0=2.5 in combination with three
di�erent values of �0, i.e., �0 2 (0:75; 1; 1:50). Thus,
we have three combinations of in-control parame-
ters (�0; �0) = f(2:50; 0:75); (2:50; 1:00); (2:50; 1:50).
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For these in-control, three cases we assumed �1 2
(0:1; 0:4; 0:5; 0:6; 0:9; 1; 1:3; 1:5; 2; 2:5; 2:7; 3) and �1 2
(0:1; 0:4; 0:5; 0:6; 0:75; 0:9; 1; 1:3; 1:5) to represent the
out-of-control situation.

6.1. Performance analysis assuming
�0 = 2:5; �0 = 0:75

From Table 4 and Tables S4{S10, given in the Sup-
plementary data �le, it is quite clear that when we
�x the value of the shape parameter �, the two-sided
control chart is the quickest to detect the downward
shift in the rate parameter �. Furthermore, for �xed
�, the ARL has an increasing pattern in the lower-
sided chart but an opposite pattern for the upper-sided
chart. The same pattern is observed for lower and
upper sided charts when we �x the value of �. The
two-sided control chart, however, behaves di�erently;
for �xed �, its ARL values increase till the nominal
value of � and when � > 0:75, the ARL has increasing
trend till � < 2 and beyond that the ARL decreases.
It can also be seen that the lower-sided control chart
performs poorly for � > 0:75 (upward shift in the shape
parameter) as compared to � < 0:75. The performance
of two-sided control chart also deteriorates for � > 0:75
but not as much as it does for the lower-sided chart. On
the other hand, the upper-sided control chart performs
better for � > 0:75 than the lower-sided chart. It is also
noticed that the behavior of ARL for some combination
of parameters is biased, i.e., ARL1 > ARL0, and we
left those cells blank in the tables.

The CV analysis of Table 4 shows a decreasing
pattern when we �x the value of the rate parameter �
for downward shifts and increasing pattern for upward
shifts. This suggests that the lower-sided control chart
is e�cient for detecting large-size shifts in downward
direction only. A similar behavior is observed when
we �x the value of shape parameter �, that is, the
chart is only e�cient in detecting large-size shifts in the
downward direction. For upper-sided chart, when we
�x the value of �, the CV values decrease for � > 0:75
and increase for � < 0:75 which implies that the chart
can e�ciently be used for detection of large size shifts
in upward direction.

The quartile analysis from Table 5 shows that, for
�xed �, the ARL value is greater than the third quartile
(Q3) or lies between second and third quartile (Q2 and
Q3). This means that the ARL distribution is either
highly or moderately skewed (positively). Similarly,
�xing the value of �, the ARL distribution is observed
highly skewed for large downward shift in � and less
skewed for comparatively small downward or upward
shift in �. The two-sided control chart shows similar
characteristics. The upper-sided chart shows that for
�xed �, the distribution of ARL is moderately skewed
as all the ARL values lie between Q2 and Q3. For a
�xed �, the ARL distribution shows a similar pattern as

it does for �xed value of �. Similarly, one can compare
the results listed in Tables S4{S10, which are given in
the Supplementary data �le.

7. Real data analysis

This section presents two real data applications to
show the suitability of the proposed distribution and
its application in quality control.

7.1. Rainfall data
The �rst data set has taken from [8], which is the daily
rainfall (in mm) in the January for a location in Florida
from 1907-2000. The mode of the original data set is
zero. We transformed the data using Y = exp(�X)
and the resulted data set is listed in Table 5, which
represents the proportion of daily rainfall.

We compare the proposed UNH model with some
other distributions, such as Kumaraswamy distribu-
tion [32]:

f(y;�; �) = ��y��1(1� y�)��1 ; y 2 (0; 1): (85)

Topp-Leone distribution [17]:

f(y;�; �) = 2�y��1(1� y)(2� y)��1 ; y 2 (0; 1); (86)

re
ected Generalized Topp-Leone (rGTL) distribu-
tion [7]:

f(y;�; �)=2�y��1(1�y)(2�y)��1; y= 2 (0; 1): (87)

Beta distribution:

f(y;�; �) = 1
B(�; �)

y��1(1� y)��1; y 2 (0; 1): (88)

The values of the Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (CAIC),
Bayesian Information Criterion (BIC), Hanan Quinn
Information Criterion (HQIC), MLEs with their stan-
dard errors, Kolmogorov-Smirnov (K-S) statistic p-
values are listed in Tables 6 and 7, showed that the
UNH distribution �ts better than the other distribu-
tions. From Figure 2, it is clear that the proposed
chart can e�ectively be used for monitoring the rainfall
data.

7.2. Anxiety data analysis
The second data have been obtained from Bourguignon
et al. [33], which is about the anxiety test performed
in a group of 180 \normal" women, i.e., outside of a
pathological clinic Townsville, Queensland, Australia.
The data set is reproduced in Table 8.

The values of AIC, CAIC, BIC, HQIC, MLEs
with their standard errors, Kolmogorov-Smirnov (K-S)
statistic p-values are listed in Tables 9 and 10. From
the tables, it is evident that the UNH distribution
outperformed the other distributions. Furthermore,
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Table 4. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the
lower-sided chart with �0=0.75, �0=2.5, �1 2 (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3) and �1 2
(0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5).

� � 0.1 0.4 0.5 0.6 0.75 0.9 1 1.3 1.5

ARL 0.1 1.041 1.188 1.245 1.308 1.414 1.536 1.627 1.964 2.255

CV 0.199 0.397 0.444 0.485 0.541 0.591 0.621 0.701 0.746

Q1 0.089 0.156 0.177 0.199 0.234 0.273 0.302 0.404 0.491

Q2 0.215 0.376 0.427 0.479 0.564 0.658 0.727 0.974 1.183

Q3 0.429 0.751 0.853 0.959 1.129 1.317 1.454 1.948 2.366

ARL 0.4 1.121 1.718 2.048 2.491 3.489 5.184 7.012 21.689 58.019

CV 0.328 0.646 0.715 0.774 0.845 0.898 0.926 0.977 0.991

Q1 0.129 0.329 0.429 0.561 0.852 1.342 1.869 6.095 16.547

Q2 0.311 0.794 1.035 1.351 2.052 3.235 4.505 14.685 39.868

Q3 0.623 1.588 2.069 2.702 4.105 6.469 9.010 29.3692 79.737

ARL 0.5 1.140 1.893 2.347 2.994 4.586 7.659 11.411 53.154 213.829

CV 0.351 0.687 0.758 0.816 0.884 0.932 0.955 0.991 0.998

Q1 0.137 0.383 0.518 0.708 1.169 2.056 3.137 15.147 61.371

Q2 0.331 0.923 1.249 1.705 2.818 4.954 7.558 36.496 147.868

Q3 0.662 1.845 2.497 3.411 5.636 9.908 15.115 72.992 295.736

ARL 0.6 1.158 2.069 2.665 3.562 5.969 11.253 18.569 135.455 867.527

CV 0.369 0.719 0.790 0.848 0.912 0.955 0.973 0.996 0.999

Q1 0.144 0.436 0.612 0.873 1.569 3.091 5.197 38.828 249.428

Q2 0.348 1.050 1.474 2.103 3.781 7.448 12.521 93.543 600.977

Q3 0.695 2.100 2.947 4.206 7.561 14.896 25.043 187.086 1201.954

ARL 0.9 1.201 2.613 3.743 5.727 12.599 34.761 80.017 2745.419 97404.030

CV 0.409 0.786 0.856 0.909 0.959 0.986 0.994 0.999 0.999

Q1 0.161 0.596 0.926 1.499 3.479 9.855 22.875 789.664 28021.250

Q2 0.388 1.437 2.230 3.612 8.382 23.746 55.116 1902.633 67514.980

Q3 0.776 2.874 4.460 7.224 16.764 47.492 110.233 3805.266 135030

ARL 1 1.214 2.800 4.148 6.630 15.971 50.259 130.211 7945.941 550636.1

CV 0.419 0.802 0.871 0.922 0.968 0.990 0.996 0.999 0.999

Q1 0.166 0.651 1.043 1.759 4.449 14.315 37.315 2285.761 158408

Q2 0.399 1.569 2.513 4.239 10.720 34.489 89.909 5507.360 381671.5

Q3 0.798 3.138 5.025 8.479 21.440 68.979 179.817 11014.72 763343

ARL 1.3 1.247 3.382 5.514 10.016 31.651 149.313 561.104 224986.8 |

CV 0.445 0.839 0.905 0.949 0.984 0.997 0.999 0.999 1

Q1 0.178 0.821 1.438 2.735 8.961 42.811 161.276 64724.53 |

Q2 0.428 1.977 3.464 6.589 21.590 103.149 388.581 155948.6 |

Q3 0.856 3.955 6.928 13.179 43.180 206.298 777.163 311897.2 |

ARL 1.5 1.266 3.788 6.564 12.948 48.992 304.797 1485.845 2349055 |

CV 0.458 0.858 0.921 0.961 0.989 0.998 0.999 1 1

Q1 0.184 0.939 1.741 3.579 13.949 87.541 427.307 675780.9 |

Q2 0.444 2.262 4.194 8.624 33.611 210.922 1029.563 1628241 |

Q3 0.888 4.523 8.388 17.247 67.221 421.844 2059.125 3256481 |
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Table 4. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the
lower-sided chart with �0=0.75, �0=2.5, �1 2 (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3) and �1 2
(0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5) (continued).

� � 0.1 0.4 0.5 0.6 0.75 0.9 1 1.3 1.5

ARL 2 1.307 4.877 9.747 23.451 138.659 1753.213 16955.01 | |
CV 0.485 0.892 0.947 0.978 0.996 0.999 0.999 1 1
Q1 0.199 1.254 2.658 6.602 39.746 504.224 4877.509 | |
Q2 0.479 3.021 6.403 15.906 95.764 1214.888 11751.97 | |
Q3 0.957 6.041 12.806 31.812 191.528 2429.776 23503.94 | |

ARL 2.5 1.342 6.078 13.866 40.321 370.370 9693.294 193474 | |
CV 0.505 0.914 0.963 0.988 0.999 0.999 1 1 1
Q1 0.210 1.600 3.843 11.455 106.405 2788.443 55658.86 | |
Q2 0.507 3.856 9.260 27.600 256.375 6718.533 134105.6 | |
Q3 1.014 7.711 18.521 55.201 512.749 13437.07 268211.2 | |

ARL 2.7 1.354 6.591 15.819 49.513 541.553 19034.65 512333 | |
CV 0.512 0.921 0.968 0.989 0.999 0.999 1 1 1
Q1 0.215 1.748 4.405 14.099 155.651 5475.784 147388.9 | |
Q2 0.517 4.213 10.615 33.972 375.029 13193.47 355121.8 | |
Q3 1.034 8.426 21.229 67.944 750.059 26386.93 710243.7 | |

ARL 3 1.372 7.399 19.118 66.684 946.099 51931.07 2207735 | |
CV 0.521 0.929 0.973 0.992 0.999 1 1 1 1
Q1 0.220 1.981 5.355 19.039 272.032 14939.49 635125.6 | |
Q2 0.531 4.774 12.902 45.874 655.439 35995.53 1530285 | |
Q3 1.062 9.548 25.804 91.748 1310.880 71991.060 3060570 | |

Table 5. Daily rainfall (in mm) on the January for a location in Florida from (1907-2000).

1.00 1.00 1.00 0.70 1.00 1.00 0.94 1.00 1.00 1.00 0.86 0.58 0.58 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.98 0.33 1.00 1.00 0.77
1.00 1.00 1.00 0.51 0.90 1.00 1.00 0.77 1.00 1.00 0.98 1.00 1.00 1.00
1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 0.90 0.63 0.59 0.54 0.95 1.00 1.00 1.00 1.00 0.97 1.00 0.63 0.63
1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.82 1.00 1.00 1.00 0.47 1.00 1.00
1.00 0.41 0.39 1.00 1.00 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00

Table 6. AIC, BIC, CAIC, and HQIC computed after �tting di�erent distributions on for rainfall data.

Statistic UNH Kumaraswamy Topp-Leon rGTL Beta
AIC {400.864 {329.714 {107.605 {99.080 {331.849
CAIC {400.739 {329.589 {107.605 {98.955 {331.724
BIC {395.674 {324.524 {105.01 {93.890 {326.659
HQIC {398.764 {327.614 {106.555 {96.980 {329.749

Table 7. Maximum likelihood estimates with their standard errors (in parenthesis) and K-S test p-value for rainfall data.

Model MLEs K-S
UNH (�; �) �̂ = 0:513; �̂=36.317 (0.039, 5.657) 0.717
Kumaraswamy(�; �) �̂ = 5:045; �̂=0.428 (0.869, 0.050) 0.441
Topp-Leon (�) �̂ = 8:568 (0.861) 0.426
rGTL (�; �) �̂ = 0:443; �̂= 4.430 (0.147, 0.614) 0.920
Beta (�; �) �̂ = 4:512; �̂= 0.439 (0.798, 0.051) 0.438
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Figure 2. Control charts for the rainfall data assuming UNH and beta distributions.

Table 8. Anxiety data set.

0.01 0.17 0.01 0.05 0.09 0.41 0.05 0.01 0.13 0.01 0.05 0.17 0.01 0.09
0.01 0.05 0.09 0.09 0.05 0.01 0.01 0.01 0.29 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.09 0.37 0.05 0.01 0.05 0.29 0.09 0.01 0.25 0.01 0.09
0.01 0.05 0.21 0.01 0.01 0.01 0.13 0.17 0.37 0.01 0.01 0.09 0.57 0.01
0.01 0.13 0.05 0.01 0.01 0.01 0.01 0.09 0.13 0.01 0.01 0.09 0.09 0.37
0.01 0.05 0.01 0.01 0.13 0.01 0.57 0.01 0.01 0.09 0.01 0.01 0.01 0.01
0.01 0.01 0.05 0.01 0.01 0.01 0.13 0.01 0.25 0.01 0.01 0.09 0.13 0.01
0.01 0.05 0.13 0.01 0.09 0.01 0.05 0.01 0.05 0.01 0.09 0.01 0.01 0.01
0.01 0.01 0.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.37 0.25
0.05 0.05 0.25 0.05 0.05 0.01 0.05 0.01 0.01 0.01 0.17 0.29 0.57 0.01
0.01 0.05 0.01 0.01 0.01 0.17 0.29 0.57 0.01
0.05 0.01 0.09 0.01 0.09 0.49 0.45 0.01 0.01 0.01 0.05 0.01 0.17 0.01
0.13 0.01 0.21 0.13 0.01 0.01 0.17 0.01 0.01 0.21 0.13 0.69 0.25 0.01
0.01 0.09 0.13 0.01 0.05 0.01 0.01 0.29 0.25 0.49 0.01 0.01

Table 9. AIC, BIC, CAIC, and HQIC computed after
�tting di�erent distributions using anxiety data.

Statistic UNH rGTL-PS Topp-Leon

AIC -450.782 -443.914 -430.609

CAIC -450.709 -443.842 -430.585

BIC -444.522 -437.655 -427.479

HQIC -448.241 -441.374 -429.339

the UNH distribution has the lowest AIC and BIC
values. Figure 3 indicates that anxiety level of many
women fall on the lower limit of the proposed chart.
This implies that these women need psychological
therapy to improve their mind health.

8. Conclusion

In this article, a new distribution to accommodate the
in
ation of the ones is proposed. Furthermore, di�erent

Table 10. Maximum likelihood estimates with their
standard errors (in parenthesis) and p-values of K-S test
for anxiety data.

Model MLE K-S

UNH (�; �) �̂=8.794, �̂=0.025 (2.188,0.006) 0.356

rGTL-PS (�; �) �̂ = 0:537, �̂=6.378 (0.223,1.090) 0.407

Topp-leon (�) �̂=0.372 (0.028) 0.264

properties and estimation methods are discussed in
detail. From the simulation results using di�erent
methods of estimation, it is clear that the Maximum
Product of Spacing (MPS), Maximum Likelihood Esti-
mation (MLE), Anderson-Darling (AD), Cram�er-Von-
Mises (CVM), and PCE perform better in terms of
Root Mean Squared Error (RMSE) than the rest of
the methods. In addition to estimation methods,
control charts are also proposed and their performance
is studied using the ARL criterion. Two-real data
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Figure 3. Control chart for anxiety data.

applications to show the practicality of the proposed
distribution and utilization in process monitoring are
also discussed. From the ARL study, it is noticed
that for some combination of parameters, the ARL1 >
ARL0 and hence, unbiased design of the control chart
may be studied in the future.
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