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Abstract. In practice, the data related to rates and proportion may have excess of ones
wherein the beta distribution does not fit well. To deal with the inflation of ones, this
article introduces unit Nadarajah and Haghighi distribution. Besides deriving statistical
properties of the proposed distribution, several estimation methods are discussed. In
particular, maximum likelihood estimation, least squares estimation, weighted least squares
estimation, maximum product of spacing, minimum spacing absolute distance estimation,
minimum spacing absolute log-distance estimation, Cramér-Von-Mises, Anderson-Darling
method and right-tail Anderson-Darling method are considered. Using real data sets, it
is shown that the new distribution outperforms some well-known existing distributions.
Furthermore, the application of the proposed distribution in quality control is also
discussed. A control chart using unit Nadarajah and Haghighi distribution is constructed
and its performance is evaluated using the average run length.

Squared estimation.

1. Introduction

Recently many distributions have been introduced in
statistics to accommodate natural phenomena arising
from diverse fields. In lifetime data analysis, Weibull
distribution has a special significance and considered
as the benchmark model. Depending on the shape
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parameter, the Weibull distribution is flexible to model
increasing, decreasing, and constant hazard function.
In addition, its closed form cumulative distribution
function also exists. However, to deal the data with
range between zero and one, beta distribution is more
appropriate and many absolutely continuous distribu-
tions have been used to generate flexible distributions
to accommodate the data of proportion. For exam-
ple, Mazucheli et al. [1] introduced the unit-Weibull
distribution and showed its flexibility over the beta
distribution. Similarly, the unit-gamma distribution
[2], unit logistic distribution [3], unit Lindley distribu-
tion [4], unit Gompertz distribution [5], Topp-Leone
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generated distributions [6], reflected generalized Topp-
Leone power series distribution [7], etc., are introduced
to deal proportion data.

Nadarajah and Haghighi [8] introduced a new
extension of the exponential distribution, known as the
Nadarajah and Haghighi (NH) distribution, to deal
with the inflation of zeros in absolutely continuous
data. Motivated by the application of NH distribution,
the aim of this article is to introduce Unit Nadarajah
and Haghighi (UNH) distribution. A distinct feature
of UNH distribution is that it is not constructed by
taking into account the positive part of the real line
and neither includes special functions nor additional
parameters in the formulation but it is constructed in
the unit interval. As a consequence, very few distribu-
tions with unit interval/finite support are available in
the literature. However, while considering real life data
sets concerning percentages, proportions or fractions,
etc., one needs to consider values in a limited range
[9]. Likewise, survival time of units/items/subjects
of interest are normally greater than zero and also
the lifetime of units/items/subjects of interest cannot
arrive at infinite point. In such cases, it is necessary to
use a bounded model [10,11]. Similarly, there are many
random variables and random processes that appear in
real life applications whose values are bounded both
at the lower and upper ends [12-16]. Besides, in the
context of reliability measurement, Geng¢ [17] stated
that to get plausible results of reliability, it is better
to have models defined on the unit interval.

In the premise of the above, the UNH distri-
bution is suitable to handle the inflation of ones in
the proportion data. For example, let compare the
mean proportion of days out of 30 wherein people
do some physical exercises for at least 30 minutes.
If people do exercise 30 out of 30 days, then data
will have inflation of one and the response will be
highly skewed. In such situation, beta distribution
cannot be used because it does not accommodate the
occurrence of one. Similarly, comparing the proportion
of rain in two cities can also lead to inflation of one
when both cities have the same amount of rain in
a given time. Besides introducing UNH, we esti-
mate the parameters of the UNH using nine different
methods, including Maximum Likelihood Estimation
(MLE), Least Squares Estimation (LSE), Weighted
Least Square Estimation (WLSE), Maximum Product
of Spacing (MPS), Minimum Spacing Absolute Dis-
tance Estimation (MSADE), Minimum Spacing Ab-
solute Log-Distance Estimation (MSALDE), Cramér-
Von-Mises (CVM), Anderson-Darling (AD), Percentile
Estimation (PCE), and Right-Tail Anderson-Darling
(RAD). In addition to estimation of the parameters
of the model, we also construct control charts using
UNH distribution to show its practical application for
monitoring data.
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The rest of the article is organized as follows. Sec-
tion 2 presents the derivation of the UNH distribution
while properties including quantile function, moments,
entropies, order statistic are discussed in Section 3.
Section 4 discusses different estimation methods to
estimate the unknown parameters of the proposed
distribution. The simulation study is presented in
Section 5. Control charts and their performance assess-
ment are presented in Section 6. Real data applications
are presented in Section 7, whereas concluding remarks
are given in Section 8.

2. UNH distribution

The main aim of the proposed model is to deal with the
inflation of ones. To this end, the probability density
function and cumulative distribution function of the
NH distribution with two parameters a, A are defined
as:

flzya,N) = a1+ Ax)*Lexp [l — (14 Azx)?],
x>0,0,A>0, (1)

F(z;a,\)=1—exp[l — (1 + Az)°],
xz>0,a,A>0. (2)

Now, using the transformation ¥ = exp(—X), we
obtain the following probability density function:

aA
—(

flyia, ) = —=(1 = Alny)* exp[l — (1 — Alny)?],

0<y<l. (3)

Figure 1(a) represents the shape of the UNH distri-
bution which is decreasing and increasing for different
values of the parameters. The parameters a, A > 0 are
non-negative where « is the shape parameter and \ is
the rate parameter.

The expression of the CDF of the UNH distribu-
tion is:

F(y;a,\)=exp [1—(1-Alny)7, O<y<1l, (4)

whereas the graphical depiction is given in Figure 1(b).

The survival function is a function that provides
the probability that a particular object will survive
after a specific time. The term survival function
is extensively used in human mortality to show the
survival time of a patient beyond a specific time. In
reliability, it is used to show the performance of electric
devices beyond a specific time. The survival function
is given by:

Sly;a, A)=1—exp[1—(1—=Alny)*], O<y<l. (5)

The hazard function is the ratio of probability density
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Figure 1. PDF, CDF, survival, hazard, and reverse hazard function of the UNH distribution.

function and survival function.
obtained as:

h(y) = aX(l = Alny)* texp[l — (1 —:\ln ¥)%] (©)
y(1 —exp[l — (1 = Alny)°])
Figure 1(d) depicts the hazard function of the UNH dis-
tribution where it can be noticed that the distribution
has decreasing, increasing-decreasing hazard function
for different choices of the parameters. This shows the
flexibility of the UNH distribution.

The cumulative hazard is the sum of all the hazard

values to a particular time. The cumulative hazard
function of the UNH is given by:

H(y;a,\) =

/y aA(l = Mny)* Lexp[l— (1 — Alny)?]
0 y [l —exp(l = (1= Alny)*)]
Similarly, the Reversed Hazard Function (RHF) is a
important tool in reliability. The RHF of the UNH
distribution is defined as:

flya, )

T (8)
Fly;a,\)

and depicted in Figure 1(e).

For the UNH, it is

dy. (7)

ry; o, ) =

3. Statistical properties

This section derives some important statistical proper-
ties of the UNH distribution.

3.1. Quantile function

The quantile function of the UNH is obtained by
F(y) = u, where u ~ Uniform(0,1), that is, u =
exp(l — (1 — Mog(y))*). The simplified form of the
quantile function of the UNH is given by:

y=ewp (0= 0= m)®)). (9)

The pth quantile function of UNH distribution is
defined as:

w=esw (0= -mp)H). (10)

Using p = 0.5 in Eq. (10), one can obtain the median
of the UNH distribution as under:

s =exp 1= (1= Tog(05)%) ) (1)
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3.2. The moments

In this section, we derive the rth moment for the UNH
distribution. The first fourth moments are the most
important to describe the shape of the distribution.
Suppose the random variable Y follows the UNH (A, a),
then the 7th moment is given as:

1
u, = / v [y, a,N)dy
0

1
:/ ady” H(1=Xogy)* " exp(1—(1—Alogy)*). (12)
0

Using the binomial expansion on [1 — F(y)]*, i.e.,:

1= Fa N =3 ()0 FWE. 09

k=0
We obtain:
a—1
_ i O — i
(1—Mogy)*™" = (1) ( . )(Alogy) ;o (14)
=1

1 a—1
-1 .
ul = a/\/ y ! -1 1(04 ) ) Alogy)t exp(1
e (U oga e

—(1 = Alog y)*)dy, (15)
/_a_l_ ia_la 1r—1 i ax
ur—;( 1)( ; ) A/Oy (Alog )" exp(1

—(1 = Alog y)*)dy. (16)

The rth moment of the UNH distribution cannot
be expressed analytically further but can be solved
numerically.

3.3. Rényt entropy
The Rényi entropy measures uncertainty of a random
variable and defined as:

Ru(s) = 2 tog | [ (). ")
Ry(y) = 1 iv log {/0 ((O;/\)lv (1 = Aln y)vle—b
exp (v(1 = (1 — Aln y))o‘)] dy. (18)

Using the Taylor series:
exp (v(1 — (1= Mng)™)) =

i (0)'(1 = (1 = Alng)*)’

i! ’ (19)

and

EREPTID D DI [SICEPITIES
k=0

We get:

Ry(y) = — mUO (@ gyt

1-v (y)v

3 -0 Mny)&)i] "

3!

1

- (] e

—Alny)ve=YV(1 -1 - Alny)“)’)]dy

1=0 k=0
(/0 1 (fj),)f<1—A1ny)”W—”[(l—Mny)“]’“)]dy
-y (e
( /0 1 %A)q{“ (- nny)<v<a—1>—ka>)]dy. (20)

Again using:
v(a—1)—ka
(1—Alny)vle=b=ke) =}~ (“(O‘ —1) - ka>

s=0

(=1)*[Alogyl*. (21)

We obtain:

(/ 1 )= Oy ) |av. (22)

3.4. Stress and strength modeling

Suppose Y; and Y, are two independent continuous
random variables, where Y1 ~ UNH (a1, A1) and Y3 ~
UNH (as,A2). Then, the stress and strength, denoted
by R, is determined as:

R= Pl > = [ T @) E )y, (23)
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1
A
R=P(y1 > y2) = / DAL~ Alng)™ !
o Y
exp(1—(1-XMlny)* ) exp(1—(1—Aolny)??
1
= / ah (1= Alny)*r—?
o ¥
exp(2—(1=A1lny)* — (1= Aslny)*?)dy.
Using;:
= fa—1
[1—/\111134]&171:,; ( 11<3 )(—1)k(>\11H?J)k~

R=P(y >p) = ok mil (O‘lk_ 1) (-1)*

k=0
' k
/ v (Oly)  exp(2 — (1 — Alny)™
0

—(1=Xolny)*?)dy.
Since:

exp(2 — (1 — MIny)* — (1 — Aalny)*?) =

L (2 1-XIny)® —(1—Xglny)@2)?
Z( ( y) : ( y)*?)

=0

M o= (i '
R=P(Y; >Yy) = "2y <;><—1>"
! 1=0 k=0

7
1 L 4
/ y ! Mlny)” (28 — (1 — Mlny)™™
0

—(1 = Aolny)™2)dy.

Again using:

(e & 101 1 i
R Ol G (SR
7=0

= (-1)’ (~1)" (-1 ==
SS90

(2% k/l - (lny)kdy)

1
( k+j y lny k+] dy)
0

1
(M’”/\z / Yy~ lny"“dy)
0

R = P(y1 > y2)

)dy.

(26)

(27)

3.5. Order statistics

In this section, we define the probability density func-
tion of the ith order statistic of the UNH distribution.
Suppose a sample of size k, ¥{1),..., Y(x), be the order
statistic obtained from a random sample Y7, ..., Y} of
size k from a continuous population with distribu-
tion function F(y;p) and probability density function
f(y;¢). Then, the probability density function of y(,
is given by:

k! ~
fra(y) = me(?/)[F(?JHO)]l_l
[L—Fly;e))* (29)
where ¢ = 1,2,...,k. For the UNH distribution, we
have:
fray () Z%(%(l — Alny)* "
exp(1— (1 —Alny)%)) |exp(l — (1 —=Alny)%) B
[1 —exp(1 — (1 — Alny)™)]*".
(30)

While the probability density function of the largest
order statistic yx) is given by:

ak

—(1 = Alny)*~

fya, (W) = exp(1— (1 - Alny)®)

[exp(1 — (1 = Alng)*)]* ", (31)
and the probability density function of the smallest
order statistic y(1) is given by:

alk

frap(y) = ——=(1 = Alny)" " exp(1 — (1 = Alny)®)

[1—exp(l—(1—Alny)*)]F". (32)

4. Estimation of parameters

In this section, we discuss the unknown parameters
estimation of the UNH distribution using the MLE,
LSE, PCE, MPS, MADE, MSALDE, CVM, AD, and
RAD methods [18,19].

4.1. MLE method

Suppose Y7,Y5,...,Y,, be a simple random sample from
the UNH distribution. Then, the likelihood function is
given by:

n n

a)\ _
L\ a,y) =[] i \a) = H Alog ;)"
=1 =1
exp(1 — (1 — Mog y;)“). (33)

The log-likelihood function is given by:



6 1. Shah et al./Scientia Iranica (2025) 32(8): 5167

In L(A, a,y) = nln(Aa)

Zln yi)

+a—-1) zn:ln(l —Alny;)+n

=1

_2(1 — Alny;)*. (34)

It follows that the maximum likelihood estimators
MLEs of the parameters are obtained by differentiating
the log-likelihood function with respect to the parame-
ters A and « and then equating the resulting equations
to zero.

OnL\a,y) n
—ond - -l-Zlnl—/\lnyl)

n

=3 (1= Alny)*In(1 = Alng;) =0,  (35)

i=1

On L(\, a,y) on - (Iny;)
ot 1);(1—/\1nyi)

+a) (Iny;)(1 - Alny;)* " =0. (36)
1=1
The MLEs of the UNH distribution cannot be obtained
in closed forms. Thus, it needs to be solved numerically
for the parameters A and .

4.2. Least Squares Estimators (LSE)

Let Y7,....,Y,, is a random sample of size n from the
distribution function F(.) and Y{;) < ... < Y¥{;) denote
the corresponding order sample. The ordinary least
squares estimators can be obtained by minimizing:

@)= " [Flue) - BP o) (37)
Using B
BF() = ——. (39)
We get
Amm:ihmm—’f. (59)

Therefore, in the case of the UNH distribution, the
ordinary least squares estimators of A and «, say A\rsg
and aysp, respectively, can be obtained by minimizing:

n

Z(\a)= Z [exp(l — (1= Alny,))”) -

.12
A
i=1 n+l (40)

Differentiate Eq. (40) with respect to the unknown pa-
rameters A and « and equating the resulting equations

to zero, one can get the LSE estimators.

0Z(Na) ay_ 1
T = 2; [exp(l (1 )\lny(l)) ) n+ 1:|

exp(l — (1 = Alny;))*)a

(1= Alnyg)* ' Inye) =0, (41)

0Z(N\a) o i
aa—QZ[exp(l (1 )\lny(l))) n—l—l}

=1

exp(l — (1 = Alny(;))*)(1 — Alnyg;))“ In

(1= Alnygy) =0. (42)

As these equations cannot be solved analytically, the
non-linear equations need to be solved numerically.
The weighted least squares estimators of the unknown
parameters can be obtained to minimizing:

=Y wi[FO) ~BEOW)]. (43)
Using
E(F(Y;)) = ni T (44)
We get
a):;wi[F(Y(i))—n+1] : (45)
The weight w; are equal to:
1 (n+1)*(n+2)
Viyy)  jln—j+1) °

Therefore, in the case of the UNH distribution, the
weighted least squares estimators of A and a, say
Awrse and awrsge, respectively, can be obtained by
minimizing:

Zwl [exp (1=Anye))*)—

2
v
n+1 (46)

that is, differentiate with respect to the unknown
parameters A and « and equating to zero, we get the
following equations:

BZ)\a _22

)
n+1

[exp (1 -(1- /\lny(i))a) —
exp (1= (1 = Alny;)*) «

(1 — Aln y(i))ailln y(i) = 0, (47)
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dZ(\, ) :2i (n+1)%(n +2)

da ~ jln—j+1)

{exp(l — (1= Almye)") - - i 1]

exp(l — (1 — Aln y(i))a> (1 — Aln ?J(i))a

In (1= Alny;) =0. (48)
The above equations need to be solved numerically.

4.3. PCE method

If the cumulative distribution function have a closed
form, then one can estimate the unknown parameter
by fitting a straight line to the percentile points. In
our case:

F(y;a,A) = exp (1 — (1 - Mogy)®), (49)
therefore:
1 1
Yy = exp (/\ (1 — (1 —log(u)) )) . (50)
Let Y7,....,Y,, is a random sample of size n from the

distribution function F(.) and Y(;) < ... < ¥{;) denote
the corresponding ordered sample. The estlmate of A
and « can be obtained by minimizing;:

n

20,0=3 [y e (S- 1 H) | 61

i=1
that is, differentiate with respect to a and A:

W _ i[y(i) —expi\(l ~ (1 = In(us))? )H

=1

2=

exp (1 - (1w )

(1 —1In(u:)* In (1 — In(u;)) = 0, (52)

0 _ 5[ —esp (10 -1~ miwy )

i=1

exp (1~ (1= In(u))¥)
1 L
W(l—(l—ln(ui))“)—ov (53)
where u; = an.

4.4. MPS method
For the method of MPS [20,21], we define:

Dj(Oé, )‘) :F(yj:k|aa )\) - F(yj—1:/»‘|a7 A)v

i=1,2,....k. (54)

Let &prps and 5\Mp5 are the estimators obtained using
the MPS for the UNH distribution parameters o and
A. The geometric mean of the spacings is defined as:

A) = {kﬁl Dj(a,/\)-l : , (55)

=

or maximizing the function:

k+1
H(a, ZlnD o, ), (56)
OH(a, \) 1 R
da k+1 < D {“1 Ykl A)
—m(ymuaw} ~o, (57)
OH(a, \) 1 R
a\ k—i—lZD {w”]”a’\)
~ea(y-aafa )| =0, (59)

wi (Yo, A) = exp(l — (1 — Any;.x)®)
(1= Alny;e)*In(1 = Any;p),  (59)
wa (Y], A) = exp(l — (1 — Alny;..)")a

(1= Aoy Y y,p). (60)
Maximizing H(a, A) is as efficient as the MLE and the
MPS estimators are consistent under more common
conditions than the MLE estimators.

4.5. MSADE method

The method of MSADE [22] and the authors showed
that parameters estimation by MSADE is as efficient as
MLE. Furthermore, the MSADE are consistent under
more flexible condition than the MLE estimators. We
define:
Dj(Oé, )\) =

F(yjx|a, ) = F(yj—1:k]o, M),

j=1,2, ..k (61)

Then, &y sapr and S\MSADE, are the UNH distribu-
tion parameters o and A are obtained by minimizing
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the following function with respect to o and A.

k+1 1
T =N D, - 9
(Oé,A) ]z::l ](Oé,/\) TL+1 b (6 )
k+1 . _ 1
)\) m) |
—m(yj_ma,m] —0, (63)
k+1 1
5T (a, /\ ey [
we (y':k|a7A)
Z|D aA) Ly
a5l A)] —0, (64)
where:

w1 (Yjiklo, A) = exp(l — (1 — Alny;.)®)

(1= Alny;)* In(1 = Alny;p),  (65)
wa(yjkela, A) = exp(l — (1 — Alny;.)")a

(1= Alny;)*  (Inyjp). (66)

4.6. MSALDE method
The MSALDE are obtained by minimizing T{(a,\) as
follows:

k+1
1
T(a,)\) = ; In Dj(a, \) —In . (67)
1 InDj(ea,\) —1In n<1H 1

[wi(yskla, A) — wi(yj—1kla, N)] =0, (68)

[wa (yjik|a, A) = wa(yj—1kle, )] = 0, (69)
where
wi(Yjkla, A) = exp(l — (1 — Alny;)®)

(1= Alny;p)*In(l — Alny,x),  (70)

w2(yj:k|av )‘) = exp(l - (1 —Aln yj:lc)a)a

(1= Alnyje)® *(ny;.z). (71)

4.7. CVM method

To encourage our decision of CVM estimators, Mac-
Donald [23] presented an empirical proof that the bias
of these estimators is smaller than the other small
distance type estimators. The CVM estimators dov
and Aoy of the UNH distribution parameters « and
A are obtained by minimizing the following function:

C(a, +Z< (Yjinlan) — 2j2;1>2. (72)

These estimators can also be obtained by solving the
following non-linear equations:

O 3 (enpl1 = (1= Ay - 252 )

i=1

(I=Alny;.)% In(1-Alny;..) =0, (73)

acéo)[\’)\):; (eXp(l_(l—/\lnyj:k)a)_2j - 1) a

(l—Alnyj:k)"‘fl(lnyj:k) =0. (74)

4.8. AD and RTADE methods
In this section, we define the method of AD estimation
for the UNH distribution as:

Ala, A)

w\'—‘

k
224—1 {ln F(yjux |, A)

+1n Py pulan V). (75)

These estimators can also be obtained by solving non-
linear Eqgs. (76)—(79) are shown in Box I. Similarly, the
RTADE estimators &grrapr and ;\RTADE of the UNH
parameters « and A are obtained by minimizing:

k
R(a, \) = g =2 I F(yjla, \)

Jj=1
Lk
%Z 2j = 1) In F(yri1—jixla, A). (80)
=

These estimators can also be obtained by solving non-
linear Eqs. (81)—(82) are shown in Box II.

5. Simulation study

The performance of ten different estimation methods is
compared using a comprehensive simulation study. For
all methods, we computed biases, mean squared errors,
average absolute difference between the theoretical
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w _ é(zj ~ 1)exp(1 —(1- Mn(f;;()fi)%:iﬁ(z]]f))g In(1 — Aln(y;.))
Lot
R
S =
% xp(1 = (1 = Alny;)*)(1 = Alny;)® In(1 — Alny,ie), (78)
% =exp(l — (1= Alny;.)*)e(l — Any,)* H(ny,.p). (79)
Box I
% _ Z exp(l— (1 Alne@j:k))f)(l_— An(y;4))° In(1 = Any;c)
a 2 xp(1— (1= Mny))°)
e e T
OR(@.) _ _, 3~ (L= (1= Anfy)) (1 = Nn(y0))*~In(y;0)
=~ exp(1 — (1 — An(y;ux))®
i -yl

Box II

and empirical estimate of the distribution functions
(Dabs), and the maximum absolute difference between
the theoretical and empirical distribution functions
(Dmax). The experiments were repeated N=10000
times by taking samples of sizes n = 20,40,60,80
and 100, with (o, \) = (0.5,0.5), (0.5,2.0), (1.5,2.0),
(1.5,0.5), (3.5,2.0), (3.0,0.5).

It is noticed from Tables 1-3 that the biases and
Root Mean Square Error (RMSE) of o and A decrease

when sample size increased for all methods of esti-
mation. The average absolute difference between the
theoretical and empirical estimate of the distribution
functions (Dabs) is smaller than the maximum absolute
difference between the theoretical and empirical distri-
bution functions (Dmax) for all methods of estimation.
The simulation results suggest that the WLS perform
better in terms of biases and RMSEs. The second
better performing estimators is the MPS estimators.
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Table 1. Simulation results for «=0.5 and A=0.5.
n  Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias («) 0.766"  0.400* 0.094> -0.385°  -0.085' 1.787% 7.415%° 0.513°  0.647° 3.388°
RMSE (o) 2.409° 0.400° 0.219' 0.712*  0.221*  3.0507 8.8257 1.017°  3.919% 11.528'°
Bias ()\) 0.395% 167.377'° 0.8137 -0.400° -0.043' 1.3234% = 7.892° 0.546*  0.666° 0.792°
RMSE (\) 0957 177.911'° 1.520° 0.400*  1.943°%  2.706" 9.206° 1.302*  1.406* 2.760°
Dabs 0.166" 0.2017 0.168* 0.310%  0.167>  0.448° 0.6571° 0.168°  0.168% 0.169°
D max 0.266* 0.3117 0.249" 0.719%  0.250%  0.784° 0.9581° 0.270°  0.260% 0.277°
Total 223 417 202 2745 14" 48° 5710 2745 29° 458
40 Bias () 0.246* -0.400°%  0.115> -0.400°% -0.0964' 2.009° 8.7521° 0.295°  0.190% 0.808%
RMSE (o) 0.6377 0.400%°  0.195% 0.400%° 0.140"  3.639% 10.085" 0.585%  0.572° 3.915°
Bias ()\) 0.378"  162.444' 0.541"7 -0.400®> -0.506° 1.629° 9.381° 0.426%  0.489* 0.502°
RMSE ()\) 0.654%> 167.240'° 0.837° 0.400*  1.0567  3.181% 10.531° 0.8014% 0.812* 1.032°
Dabs 0.166% 0.1997 0.168° 0.310%  0.165*  0.460° 0.659° 0.168*  0.167% 0.168°
D max 0.256* 0.312°  0.250% 0.761°  0.247'  0.835° 0.973%° 0.262°  0.254% 0.266°
Total 202 448 23* 29° 17! 51° 580 26° 22% 407
60 Bias (a) 0.169* -0.400"° 0.120° -0.400"° -0.096'  2.258° 9.535'0 0.217°  0.149° 0.335°
RMSE («) 0.289* 0.400%%  0.182% 0.400%% 0.122'  3.995° 10.8111° 0.398%  0.250° 1.391%
Bias ()\) 0.374'  161.036'° 0.462° -0.400° -0.638"  1.875% 10.2587 0.395%  0.439* 0.439°
RMSE (\) 0.555% 164.130'° 0.660° 0.400*  0.9107  3.528% 11.294° 0.654*  0.652% 0.785°
Dabs 0.167%  0.1997 0.167* 0.310%  0.165"  0.473° 0.660"° 0.167°  0.167* 0.168°
D max 0.253*  0.3127 0.250% 0.777%  0.246"  0.859° 0.979%° 0.258°  0.252% 0.261°
Total 17! 488 21* 345 182 52° 5810 26° 19° 377
80 Bias («) 0.145* -0.400"° 0.123% -0.4007° -0.094* 2.915° 9.744%0 0.188°%  0.138% 0.255°
RMSE (a) 0.208* 0.400°%  0.175%> 0.400°° 0.113'  4.437° 10.955° 0.316°  0.209* 1.029%
Bias ()\) 0.371'  159.932'% 0.421° -0.400* -0.707"  2.468% 10.4597 0.372%  0.409° 0.395°
RMSE (\) 0.507* 162.206'° 0.571° 0.400"  0.8757  4.043" 11.430° 0.569*  0.568% 0.650°
Dabs 0.167%  0.1997 0.167* 0.310°  0.166"  0.522° 0.661'° 0.167°  0.167* 0.167°
D max 0.251* 0.3127 0.251% 0.786%  0.246"  0.890° 0.9821° 0.256°  0.256% 0.259°
Total 17t 488 21385 3595 182 52° 5810 26° 2135 3505
100 Bias () 0.137* -0.400"% 0.124®> -0.400"% -0.092'  3.545° 9.836'° 0.172°  0.133* 0.207°
RMSE (a) 0.186% 0.400°%  0.169% 0.400°% 0.108"  4.761° 11.036° 0.272°%  0.191* 0.479%
Bias ()\) 0.369% 159.557'% 0.401° -0.400° -0.746"  2.986" 10.484° 0.362"  0.395* 0.377°
RMSE (\)  0.482% 161.409'° 0.528° 0.400"  0.8727  4.3248 11.4527 0.525%  0.527* 0.590°
Dabs 0.167* 0.199° 0.167* 0.310%  0.166"  0.571° 0.660'° 0.167°  0.167* 0.167°
D max 0.251%  0.3127 0.250% 0.791%  0.246*  0.916° 0.982%° 0.255°  0.251* 0.257°
Total 16! 488 21° 367 182 52° 5810 24° 224 355
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Table 2. Simulation results for «=3.5 and A=0.5
n  Est MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias () 3.7595  -3.400° -0.912' 5.9607  1.008*  -3.400° -3.400° 4.157% 9.003%  12.338'°
RMSE (o) 8.115°  3.400% 2.282'  6.074"  6.680*  3.400° 3.4008 9.325%  25.405° 27.828'°
Bias ()\) 1.482% 1509.383'° 3.258% 0.2887  3.292% -0.400°  -0.400° 2.514° 2.922*  4.143'
RMSE ()\) 3.207" 1598.423'° 5.411° 0.342% 5.238*  0.400° 0.400° 4.814% 5.9907  14.414%
Dabs 0.172*  0.210% 0.168* 0.408' 0.170®> 0.331'°  0.331° 0.168% 0.169°  0.166"
D max 0.267%  0.338% 0.252*  0.605' 0.253% 0.798'°  0.798° 0.261° 0.259*  0.2597
Total 338 3985 19! 338 292 3135 31%5 336 3955 4310
40 Bias () 1.774*  -3.400° -0.954* -0.707* -0.182' -3.400""  -3.4007° 2.500° 3.512° 6.515'°
RMSE (o)  6.3907  3.400° 2.064"  4.403°  4.936° 3.400%°  3.400%° 7.747%  15.072° 18.595'0
Bias ()\) 1.311%  1479.768'° 2.200° 4.754° 23237  -0.400 '* -0.400'-° 1.973* 2.061°  2.545%
RMSE (\)  2.192%  1529.969'° 3.353° 5.745° 3.295* 0.400'°  0.400° 3.3577 3.346°  4.810°
Dabs 0.167%  0.2097 0.167* NaN'® 0.168° 0.331%°  0.331%° 0.167% 0.168°  0.166*
D max 0.260%  0.3397 0.254%> NaN'® 0.252'  0.854%°  0.854%5 0.258° 0.256%  0.258*
Total 263 42° 22! 4510 257 31° 31° 31° 36" 418
60 Bias () 0.627%  -3.4007 -1.049* -0.358' -0.756% -3.400%°  -3.400%° 1.416° 1.308° 3.815%°
RMSE (a) 4.8897  3.400° 1.951%7  1.529'  3.867%  3.400*°  3.400*° 6.509° 9.887%  13.866'°
Bias (1)) 1.266%  1470.299'° 1.878° 11.397° 2.002" -0.400'°  -0.400%° 1.7787 1.819%  2.167°
RMSE (\) 1.861% 1509.415'° 2.647° 11.710° 2.617* 0.400"%  0.400"° 2.7887 2.662°  3.612°
Dabs 0.166"  0.2097 0.167*  0.585'° 0.168° 0.331%%  0.331%° 0.167% 0.167°  0.1672
D max 0.257*  0.3407 0.254> 0.842% 0.251' 0.878%°  0.878%5 0.257% 0.255%  0.257°
Total 20* 4410 232 388 273 345 348 348 33% 43°
80 Bias () -0.057"  -3.400° -1.109° 1.133%  -1.061* -3.400° -3.400° 0.743% 0.239%  2.4387
RMSE (a) 4.084" 3.400° 1.875 % 1.411' 3.183%  3.400° 3.400° 5.619% 7.174°  11.097'°
Bias (1)) 1.247%  1466.142'° 1.713° 16.729° 1.846" -0.400'°  -0.400° 1.657* 1.684°  1.924%
RMSE (\) 1.710° 1497.992'° 2.295* 16.729° 2.299° 0.400"%  0.400"" 24357 2.310°  2.982°
Dabs 0.165"  0.2097 0.167* 0.637'° 0.167° 0.331%°  0.331%° 0.167% 0.167°  0.167%
D max 0.255*  0.3397 0.253%  0.938'° 0.251' 0.894%°  0.894%5 0.256% 0.255%  0.256°
Total 19* 4810 232 45° 263 3455 3455 31° 30* 408
100 Bias () -0.296%  -3.400° S1156% 24117 -1.197°  -3.400°  -3.400° 0.283% -0.243" 1.580°
RMSE (a) 3.5597  3.400° 1.826'  2.465%  2.766°  3.400° 3.400° 4.972% 5.848°  9.347'°
Bias (1)) 1.246%  1460.600° 1.630° 21.344° 1.74417 -0.400*"  -0.400'-° 1.599* 1.618° 1.823%
RMSE () 1.631° 1491.261*° 2.116* 21.372° 2.117° 0.400*°  0.400'-° 2.2507 2.138%  2.708"
Dabs 0.166*  0.2097 0.167* 0.650'° 0.167° 0.331%°  0.331%5 0.167% 0.167°  0.1672
D max 0.255%  0.3407 0.253%  0.964'° 0.252'  0.903%%  0.903%5 0.256° 0.254%  0.256°
Total 2115 4810 2105 a0 2730 3465 3455 2045 29%5 408
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Table 3. Simulation results for a=1.5 and A=0.5
n  Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias () 3.2197 -1.400°  -0.116' 10.128° 0.632* -1.368* -1.2923 2.291°  5.582%  11.301'°
RMSE () 6.6007 1.4007 0.785%  10.337%  2.971°  1.479° 1.890* 4.850°  18.081° 25.595'°
Bias (\) 0.698* 588.098'° 1.648" -0.243' 1.694®° -0.369° -0.2832 1.202°  1.374°  1.863°
RMSE (\) 1.646* 635.295'° 2.920% 0.270'  2.898" 0.670? 1.466° 2.606°  2.866°  6.559°
Dabs 0.169°  0.2097 0.168% 0.385'°  0.169° 0.327° 0.328° 0.168*  0.168*  0.167*
D max 0.267%  0.3427 0.251"  0.584%  0.252%  0.786° 0.786'° 0.265*  0.260%  0.266°
Total 338 41° 20" 378 30* 29%5 31° 2925 367 4410
40 Bias (@) 1.735*% -1.400°  -0.084' 12.951'° 0.117% 1.969° -1.396° 1.312° 17347 5.270°
RMSE (a) 4.231° 1.400% 0.666' 13.138° 1.801* 6.6337 1.424% 3.527°  8.483%  15.045'C
Bias (\) 0.649% 564.159'° 1.076° -0.292' 1.171% 2.493° -0.396> 0.914*  0.985° 1.148"
RMSE ()\) 1.134% 600.154*° 1.651° 0.300'  1.6817 6.308° 0.4862 1.651°  1.627*  2.2718
Dabs 0.166" 0.208” 0.167* 0.399°  0.168° 0.431'° 0.328°% 0.167°  0.167°  0.167°
D max 0.259*  0.3507 0.253%  0.609%  0.251' 0.860'°  0.841° 0.261°  0.257*  0.262°
Total 212 4285 19! 387 2835 5310 295 2835 308 4285
60 Bias («) 0.589% -1.4007° -0.091%> 11.197'° -0.077 -1.400° -1.4007® 0.770°  0.604*  2.985°
RMSE (o) 2.536° 1.400*5  0.597' 11.408'° 1.191* 1.400° 1.400%° 2.6577  4.494%  10.405°
Bias ()\) 0.641%  553.105'° 0.918% 3.993°  1.014% -0.399' -0.4002 0.832*  0.878°  0.986"
RMSE())  0.963% 587.759'% 1.297* 5.085°  1.333% 0.412° 0.400" 1.3477  1.298° 1.713%
Dabs 0.166" 0.208" 0.167* 0.581'°  0.168° 0.327° 0.327° 0.167%  0.167°  0.1677
D max 0.256* 0.3557 0.253%  0.852%  0.250' 0.864° 0.864'° 0.258°  0.255%  0.260°
Total 202 46° 19! 5610 243 305 337 31° 30%3 418
80 Bias (a) 0.257* -1.400"  0.096" 8.634'° 0.161% 4.728° -1.398° 0.499%  0.214%  1.884°
RMSE (a) 1.641° 1.400% 0.550 ' 8.794'°  0.854% 7.634° 1.410* 2.144%6  2.624" 7.712°
Bias ()\) 0.6427  542.228'% 0.837° 19.553° 0.9387 4.598° -0.398" 0.781%  0.817*  0.881°
RMSE (\) 0.884% 577.891'° 1.125° 19.771° 1.171° 8.041% 0.437" 1.174%  1.128*  1.4167
Dabs 0.166" 0.2077 0.167> 0.661'°  0.167° 0.568° 0.328" 0.167%  0.167°  0.167*
D max 0.254*  0.3607 0.253% 0.983'° 0.250' 0.912° 0.879° 0.257°  0.254%  0.258°
Total 182 448 14! 5810 233 51° 2855 2855 26* 407
100 Bias () 0.128% -1.4007° -0.102% 11.454'° -0.185* 5.831° -1.40075 0.334°  0.101"  1.270°
RMSE (o) 1.193% 1.400*"  0.518' 11.541'° 0.676> 7.480° 1.400*° 1.799% 21297  6.010°
Bias ()\) 0.640% 542.885'% 0.798° 24.793° 0.887" 5.375% -0.400* 0.758%  0.786*  0.839°
RMSE (\) 0.840% 576.600*° 1.038% 24.969° 1.079° 6.822° 0.400* 1.085%  1.045*  1.2867
Dabs 0.166* 0.2077 0.167% 0.664'°  0.167°  0.609° 0.327% 0.167%  0.167*  0.167°
D max 0.254*  0.3597 0.253%  0.990'°  0.250"  0.928° 0.888% 0.256°  0.254%  0.257°
Total 1557 468 155 5810 2540 529 30° 285 233 387
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Moreover, the WLS, MPS, MLE, AD, CVM, PCE
estimators are among the good estimators for the UNH
distribution. The LSE does not perform well. It is
also confirmed that the performance of the MLE and
PCE estimators are the same, as expected, and the
performance of the CVM and AD estimators is the
same. The additional Tables S1-S3 are given in the
supplementary data file.

6. TBE control chart and performance
assessment

Time-Between-Events (TBE) control charts are fre-
quently used in reliability and other system related
applications. A TBE chart monitors the inter-arrival
times so it does not require sampling intervals [24].
The defects or nonconforming items from a manu-
facturing system are generally modeled by a Poisson
process and Poisson Cumulative Sum (CUSUM) and
Shewhart ¢ charts are the examples of such control
charts. Alternatively, we could use control charts
that are based on inter-arrival times. These inter-
arrival times are assumed to be independent and
identically distributed exponential random variables.
The exponential CUSUM chart and exponential chart
are the two examples of these type of charts [25]. The
exponential chart is preferred because one does not
have to wait for the fixed time period as it plots the
information immediately as soon it is obtained. A
comprehensive overview of these charts is provided by
Ali et al. [26].

The aim of this section is to introduce control
charts to monitor the TBE data measured between
zero and one scale. Moreover, as the UNH provides
better fit in the case of inflation of ones in the data,
the proposed TBE chart is also suitable to monitor
such data. The recent contributions to monitor data
of rates and proportion can be seen in [27-31] and the
references cited therein.

Let O denotes the false alarm probability. To
derive the control limits of the proposed chart, we
equate F(x) = §/2 and 1—/3/2 to obtain the two-sided
control chart. Similarly, equate F(z) = S or 1 — 0 to
obtain the lower or upper-sided control limit of the one-
sided chart. The simplified expressions of the ARL and
control limits for the one-sided charts are given as:

LCL =exp ((1/20)(1 = (1~ log )/},
ARLp =1/exp (1 — (1 — Alog(LCL))?),
UCE = exp ((1/20)(1 = (1 = log(1 = 3))1/2) ),

ARLy =1/ (1 — exp(1 — (1 — Alog(UCL))*)).  (83)

Similarly, the control limits and ARL expressions for
the two-sided control charts are given as:

LOL = exp ((1/2)(1 = (1~ log(8/2)1/**))) .
UCL = exp ((1//\0)(1 — (1 - log(1 — (5/2)))0/%))) 7

ARLpyu =1/ (exp (1 —(1-=Alog(LCL))™)

+1—exp(1—(1—)\10g(UC’L))°‘)>. (84)

The most common measure to access the performance
of a control chart is the Average Run Length (ARL).
It is defined to be the average number of points
(samples) plotted until we observe a signal indicating
that the process is out-of-control. The in-control ARL
(ARLg) and the out-of-control ARL (ARL;) are the
two types of ARL. Ideally, we should have a large
value of (ARLj) so that we do not have to make
unnecessary adjustments to the process while a small
value of (ARL;) so that a shift in the process may be
detected quickly. Further, for the Shewhart structure,
the ARL is known to have geometric distribution and
thus ARL = 1/p, where “p” is the parameter of
geometric distribution which represents the probability
of shift detection.

Although the ARL is widely used for performance
evaluation, it is to be noted that the variance of the
ARL distribution is large and in some cases, nearly
equal to the mean. This implies that there would be
large fluctuations in the frequencies of false alarms. To
overcome this drawback, the Coefficient of Variation
(CV) of the run length distribution can be utilized
because of the fact that the CV values do not fluctuate
drastically with the increasing/decreasing magnitude
of shifts. In addition, the CV values can directly be
compared especially when the ARL values do not differ
greatly from each other.

We conducted the ARL analysis of UNH distri-
bution for different values of shape and scale param-
eters along with some additional quantities including
CV, first, second, and third quartile (Ql, Q2 and
Q3). It is worth mentioning that the ARLg value
for all combinations of in-control rate (Ag) and shape
(ag) parameters, assuming level of significance to be
0.0027, is 370.370. Furthermore, we computed the
ARL values of upper, lower and two-sided control
charts for all the considered combination of in-control
values of the parameters. To be more specific, in
our study, we used Ag=2.5 in combination with three
different values of «p, i.e., ap € (0.75,1,1.50). Thus,
we have three combinations of in-control parame-
ters (Ao, ap) = {(2.50,0.75),(2.50,1.00), (2.50, 1.50).
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For these in-control, three cases we assumed \; €
(0.1,04,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3) and «a; €
(0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5) to represent the
out-of-control situation.

6.1. Performance analysis assuming

)\0 = 2.5, Qg = 0.75
From Table 4 and Tables S4-S10, given in the Sup-
plementary data file, it is quite clear that when we
fix the value of the shape parameter «, the two-sided
control chart is the quickest to detect the downward
shift in the rate parameter A\. Furthermore, for fixed
a, the ARL has an increasing pattern in the lower-
sided chart but an opposite pattern for the upper-sided
chart. The same pattern is observed for lower and
upper sided charts when we fix the value of A\. The
two-sided control chart, however, behaves differently;
for fixed «, its ARL values increase till the nominal
value of @ and when a > 0.75, the ARL has increasing
trend till A < 2 and beyond that the ARL decreases.
It can also be seen that the lower-sided control chart
performs poorly for a > 0.75 (upward shift in the shape
parameter) as compared to « < 0.75. The performance
of two-sided control chart also deteriorates for a > 0.75
but not as much as it does for the lower-sided chart. On
the other hand, the upper-sided control chart performs
better for o > 0.75 than the lower-sided chart. It is also
noticed that the behavior of ARL for some combination
of parameters is biased, i.e., ARL; > ARLg, and we
left those cells blank in the tables.

The CV analysis of Table 4 shows a decreasing
pattern when we fix the value of the rate parameter A
for downward shifts and increasing pattern for upward
shifts. This suggests that the lower-sided control chart
is efficient for detecting large-size shifts in downward
direction only. A similar behavior is observed when
we fix the value of shape parameter «, that is, the
chart is ounly efficient in detecting large-size shifts in the
downward direction. For upper-sided chart, when we
fix the value of A, the CV values decrease for a > 0.75
and increase for a < 0.75 which implies that the chart
can efficiently be used for detection of large size shifts
in upward direction.

The quartile analysis from Table 5 shows that, for
fixed A, the ARL value is greater than the third quartile
(Q3) or lies between second and third quartile (Q2 and
Q3). This means that the ARL distribution is either
highly or moderately skewed (positively). Similarly,
fixing the value of «, the ARL distribution is observed
highly skewed for large downward shift in A and less
skewed for comparatively small downward or upward
shift in A. The two-sided control chart shows similar
characteristics. The upper-sided chart shows that for
fixed A, the distribution of ARL is moderately skewed
as all the ARL values lie between Q2 and Q3. For a
fixed a, the ARL distribution shows a similar pattern as

it does for fixed value of A. Similarly, one can compare
the results listed in Tables S4-S10, which are given in
the Supplementary data file.

7. Real data analysis

This section presents two real data applications to
show the suitability of the proposed distribution and
its application in quality control.

7.1. Rainfall data
The first data set has taken {rom [8], which is the daily
rainfall (in mm) in the January for a location in Florida
from 1907-2000. The mode of the original data set is
zero. We transformed the data using ¥V = exp(—X)
and the resulted data set is listed in Table 5, which
represents the proportion of daily rainfall.

We compare the proposed UNH model with some
other distributions, such as Kumaraswamy distribu-
tion [32]:

Flyra ) = axy® L1 -y, ye(0,1).  (85)

Topp-Leone distribution [17]:

flya\) =20y (1 —y)(2—y)* 7,

reflected Generalized Topp-Leone (rGTL) distribu-
tion [7]:

Yy € (0’1)> (86>

flyra, ) =2ay* H(1—y)(2—y)* ',

Beta distribution:

y/ € (0,1). (87)

1

a—1 _ A1
B(a, V) L=9)"

fly;a,0) = y€(0,1).  (88)
The values of the Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (CAIC),
Bayesian Information Criterion (BIC), Hanan Quinn
Information Criterion (HQIC), MLEs with their stan-
dard errors, Kolmogorov-Smirnov (K-S) statistic p-
values are listed in Tables 6 and 7, showed that the
UNH distribution fits better than the other distribu-
tions. From Figure 2, it is clear that the proposed
chart can effectively be used for monitoring the rainfall
data.

7.2. Anziety data analysis

The second data have been obtained from Bourguignon
et al. [33], which is about the anxiety test performed
in a group of 180 “normal” women, i.e., outside of a
pathological clinic Townsville, Queensland, Australia.
The data set is reproduced in Table 8.

The values of AIC, CAIC, BIC, HQIC, MLEs
with their standard errors, Kolmogorov-Smirnov (K-S)
statistic p-values are listed in Tables 9 and 10. From
the tables, it is evident that the UNH distribution
outperformed the other distributions. Furthermore,
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Table 4. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the
lower-sided chart with ap=0.75, \o=2.5, A1 € (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3) and oy €
(0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5).

A o 0.1 0.4 0.5 0.6 0.75 0.9 1 1.3 1.5
ARL 0.1 1.041 1.188 1.245 1.308 1.414 1.536 1.627 1.964 2.255
(Y% 0.199 0.397 0.444 0.485 0.541 0.591 0.621 0.701 0.746
Q1 0.089 0.156 0.177  0.199 0.234 0.273 0.302 0.404 0.491
Q2 0.215 0.376  0.427  0.479 0.564 0.658 0.727 0.974 1.183
Q3 0.429 0.751 0.853  0.959 1.129 1.317 1.454 1.948 2.366
ARL 0.4 1.121  1.718 2.048  2.491 3.489 5.184 7.012 21.689 58.019
CV 0.328 0.646 0.715  0.774 0.845 0.898 0.926 0.977 0.991
Q1 0.129 0.329 0429 0.561 0.852 1.342 1.869 6.095 16.547
Q2 0.311 0.794 1.035 1.351 2.052 3.235 4.505 14.685 39.868
Q3 0.623 1.588 2.069  2.702 4.105 6.469 9.010 29.3692 79.737
ARL 0.5 1.140 1.893 2.347  2.994 4.586 7.659 11.411 53.154 213.829
CcV 0.351  0.687 0.758  0.816 0.884 0.932 0.955 0.991 0.998
Q1 0.137 0.383 0.518  0.708 1.169 2.056 3.137 15.147 61.371
Q2 0.331 0923 1.249 1.705 2.818 4.954 7.558 36.496 147.868
Q3 0.662 1.845 2497 3.411 5.636 9.908 15.115 72.992 295.736
ARL 0.6 1.158 2.069 2.665  3.562 5.969 11.253 18.569 135.455 867.527
(A% 0.369 0.719 0.790 0.848 0.912 0.955 0.973 0.996 0.999
Q1 0.144 0436 0.612 0.873 1.569 3.091 5.197 38.828 249.428
Q2 0.348 1.050 1.474  2.103 3.781 7.448 12.521 93.543 600.977
Q3 0.695 2.100 2.947  4.206 7.561 14.896 25.043 187.086 1201.954
ARL 0.9 1.201  2.613 3.743  5.727 12,599  34.761 80.017 2745.419  97404.030
(Y% 0.409 0.78 0.856  0.909 0.959 0.986 0.994 0.999 0.999
Q1 0.161 0.596 0.926 1.499 3.479 9.855 22.875 789.664  28021.250
Q2 0.388 1.437 2.230 3.612 8.382 23.746 55.116 1902.633  67514.980
Q3 0.776  2.874 4460 T7.224  16.764  47.492 110.233  3805.266 135030
ARL 1 1.214 2.800 4.148 6.630 15971  50.259 130.211  7945.941  550636.1
(A% 0.419 0.802 0.871  0.922 0.968 0.990 0.996 0.999 0.999
Q1 0.166 0.651 1.043 1.759 4.449 14.315 37.315 2285.761 158408
Q2 0.399 1.569 2.513  4.239  10.720  34.489 89.909 5507.360  381671.5
Q3 0.798 3.138 5.025  8.479  21.440 68.979 179.817  11014.72 763343
ARL 1.3 1.247  3.382 5.514 10.016 31.651 149.313  561.104  224986.8 —
CcVv 0.445 0.839 0.905 0.949 0.984 0.997 0.999 0.999 1
Q1 0.178 0.821 1.438 2.735 8.961 42.811 161.276  64724.53 —
Q2 0.428 1977 3.464 6.589  21.590 103.149  388.581  155948.6 —
Q3 0.856  3.955 6.928 13.179 43.180 206.298  777.163  311897.2 —
ARL 1.5 1.266 3.788 6.564 12,948 48.992 304.797 1485.845 2349055 —
CV 0.458 0.858 0.921  0.961 0.989 0.998 0.999 1 1
Q1 0.184 0.939 1.741  3.579 13.949  87.541 427.307  675780.9 —
Q2 0.444 2.262 4.194 8.624  33.611 210.922 1029.563 1628241 —

Q3 0.888 4.523 8.388 17.247 67.221 421.844 2059.125 3256481 —
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Table 4. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the
lower-sided chart with ap=0.75, \o=2.5, A\1 € (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3) and a1 €
(0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5) (continued).

A a 0.1 0.4 0.5 0.6 0.75 0.9 1 1.3 1.5
ARL 2 1.307 4.877  9.747  23.451  138.659 1753.213  16955.01  — —
(A% 0.485 0.892  0.947 0.978 0.996 0.999 0.999 1 1
Q1 0.199 1.254  2.658 6.602 39.746 504.224 4877.509  — —
Q2 0.479 3.021 6.403  15.906 95.764 1214.888  11751.97 — —
Q3 0.957 6.041 12.806 31.812  191.528 2429.776  23503.94 — —
ARL 2.5 1.342 6.078 13.866 40.321  370.370 9693.294 193474 — —
CcV 0.505 0.914 0.963 0.988 0.999 0.999 1 1 1
Q1 0.210 1.600  3.843  11.455  106.405 2788.443  55658.86 — —
Q2 0.507 3.856  9.260  27.600  256.375 6718.533  134105.6 — —
Q3 1.014 7.711 18.521 55.201  512.749 13437.07  268211.2 — —
ARL 2.7 1.354  6.591 15.819 49.513  541.553 19034.65 512333 — —
(A% 0.512 0921 0.968 0.989 0.999 0.999 1 1 1
Q1 0.215 1.748  4.405 14.099 155.651 5475.784  147388.9 — —
Q2 0.517 4.213 10.615 33.972  375.029 13193.47  355121.8 — —
Q3 1.034 8.426 21.229 67.944  750.059 26386.93  710243.7 — —
ARL 3 1.372  7.399 19.118 66.684  946.099 51931.07 2207735 — —
CcV 0.521 0.929  0.973 0.992 0.999 1 1 1 1
Q1 0.220 1.981 5.355 19.039  272.032 14939.49  635125.6 — —
Q2 0.531 4.774 12.902 45.874  655.439 35995.53 1530285  — —
Q3 1.062 9.548 25.804 91.748 1310.880 71991.060 3060570  — —

Table 5. Daily rainfall (in mm) on the January for a location in Florida from (1907-2000).

1.00 1.00 1.00 0.70 1.00 1.00 0.94 1.00 1.00 1.00 0.86 0.58 0.58 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 098 0.33 1.00 1.00 0.77
1.00 1.00 1.00 0.51 090 1.00 1.00 0.77 1.00 1.00 0.98 1.00 1.00 1.00
1.00 1.00 098 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 090 0.63 059 054 095 1.00 1.00 1.00 1.00 0.97 1.00 0.63 0.63
1.00 1.00 098 1.00 1.00 1.00 1.00 0.82 1.00 1.00 1.00 0.47 1.00 1.00
1.00 0.41 039 100 1.00 0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00

Table 6. AIC, BIC, CAIC, and HQIC computed after fitting different distributions on for rainfall data.

Statistic UNH Kumaraswamy Topp-Leon rGTL Beta

AlIC -400.864 -329.714 -107.605 -99.080 -331.849
CAIC -400.739  -329.589 -107.605 -98.955 -331.724
BIC -395.674 -324.524 -105.01 -93.890 -326.659
HQIC -398.764 -327.614 -106.555 -96.980 —329.749

Table 7. Maximum likelihood estimates with their standard errors (in parenthesis) and K-S test p-value for rainfall data.

Model MLEs K-S

UNH (o, \) & = 0.513, \=36.317 (0.039, 5.657)  0.717
Kumaraswamy(a, 3) & = 5.045, 3=0.428 (0.869, 0.050) 0.441
Topp-Leon (a) & = 8.568 (0.861) 0.426
rGTL (v, v) & = 0.443, 0= 4.430 (0.147, 0.614)  0.920
Beta (a, \) & =4.512, A= 0.439 (0.798, 0.051)  0.438
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Figure 2. Control charts for the rainfall data assuming UNH and beta distributions.
Table 8. Anxiety data set.
0.01 0.17 0.01 0.05 0.09 041 0.05 0.01 0.13 0.01 0.05 0.17 0.01 0.09
0.01 0.05 0.09 0.09 0.05 0.01 0.01 0.01 029 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.09 037 005 0.01 0.05 0.29 0.09 001 0.25 0.01 0.09
0.01 0.05> 0.21 0.01 o0.01 o0.01 0.13 0.17 0.37 0.01 0.01 0.09 0.57 0.01
0.01 0.13 0.05 0.00 o0.01 o0.01 0.01 0.09 0.13 0.01 0.01 0.09 0.09 0.37
0.01 0.05> 0.01 0.001 0.13 0.01 057 0.01 0.01 0.09 0.01 0.01 0.01 0.01
0.01 0.01 0.05 0.00 o0.01 o0.01 0.13 0.01 0.25 0.00 0.01 0.09 0.13 0.01
0.01 0.0> 0.13 0.00 0.09 0.01 0.05 0.01 0.05 0.00 0.09 0.01 0.01 0.01
0.01 0.01 0.25 0.01 001 o0.01 0.01 0.01 0.01 0.01 001 0.01 0.37 0.25
0.05 0.05> 0.25 0.05 0.05 0.01 0.05 0.01 0.01 0.01 0.17 0.29 0.57 0.01
0.01 0.05> 0.01 0.01 0.01 0.17 0.29 0.57 0.01
0.05 0.01 0.09 0.01 009 049 045 0.01 0.01 0.00 0.05 0.01 0.17 0.01
0.13 0.01 0.21 0.13 0.01 o0.01 0.17 0.01 0.01 0.21 0.13 0.69 0.25 0.01
0.01 0.09 0.13 0.00 005 0.01 0.01 029 025 049 0.01 0.01

Table 9. AIC, BIC, CAIC, and HQIC computed after

fitting different distributions using anxiety data.

Statistic ~ UNH rGTL-PS  Topp-Leon
AIC -450.782  -443.914 -430.609
CAIC -450.709  -443.842 -430.585
BIC -444.522  -437.655 -427.479
HQIC -448.241  -441.374 -429.339

the UNH distribution has the lowest AIC and BIC
values. Figure 3 indicates that anxiety level of many
women fall on the lower limit of the proposed chart.
This implies that these women need psychological
therapy to improve their mind health.

8. Conclusion

In this article, a new distribution to accommodate the
inflation of the ones is proposed. Furthermore, different

Table 10. Maximum likelihood estimates with their
standard errors (in parenthesis) and p-values of K-S test
for anxiety data.

Model MLE K-S

UNH (a, ) 6=8.794, A=0.025 (2.188,0.006)
rGTL-PS (a,v) & = 0.537, ©=6.378 (0.223,1.090) 0.407

6=0.372 (0.028)

0.356

Topp-leon («) 0.264

properties and estimation methods are discussed in
detail. From the simulation results using different
methods of estimation, it is clear that the Maximum
Product of Spacing (MPS), Maximum Likelihood Esti-
mation (MLE), Anderson-Darling (AD), Cramér-Von-
Mises (CVM), and PCE perform better in terms of
Root Mean Squared Error (RMSE) than the rest of
the methods. In addition to estimation methods,
control charts are also proposed and their performance
is studied using the ARL criterion. Two-real data



18 1. Shah et al./Scientia Iranica (2025) 32(8): 5167

1.0

Anxiety Level

Woman Number

Figure 3. Control chart for anxiety data.

applications to show the practicality of the proposed
distribution and utilization in process monitoring are
also discussed. From the ARL study, it is noticed
that for some combination of parameters, the ARL; >
ARLgy and hence, unbiased design of the control chart
may be studied in the future.
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