A packed U cells multilevel inverter fed six-phase induction drive for industrial applications

Document Type : Research Article

Authors

1 Department of Electrical Engineering, NIT Jamshedpur, Jharkhand-831014, India

2 Department of Electrical Engineering, MANIT, Bhopal-462003, India

Abstract

This paper analyses a Six-Phase Induction Drive (SPID) powered by a five-level Packed U Cells (PUC) Multilevel Inverter (MLI) for high-power applications. The MLI produces a symmetrical 5-level output voltage waveform through sensor less self-capacitor voltage balancing control. This ensures that the voltage across the capacitor stays at half the value of the DC source. This control method reduces system complexity and enhances performance. The proposed system requires fewer components than conventional Cascade H-Bridge (CHB) fed drives. The proposed system is similar to drives using Flying Capacitor (FC) and CHB MLI technology. The system is designed to power a SPID with a distributed neutral load, and its functionality is simulated using MATLAB/Simulink software. Finally, a prototype experimental setup has been developed in the laboratory to validate the analytical development of the proposed system.

Keywords

Main Subjects


References:
1. Levi, E., Bojoi, R., Profumo, F., et al. “Multiphase induction motor drives–a technology status review”, IET Electric Power Applications, 1(4), pp. 489-516 (2007). https://doi.org/10.1049/iet-epa:20060342.
2. Rathore, V. and Yadav, K.B. “Mathematical modeling and numerical analysis of SPIM drive using modified SVPWM technique”, ECTI Transactions on Electrical Engineering, Electronics, and Communications, 20(2), pp. 152-162 (2022). https://doi.org/10.37936/ecti-eec.2022202.246877.
3. Chinmaya, K.A. and Singh, G.K. “Experimental analysis of various space vector pulse width modulation (SVPWM) techniques for dual threephase induction motor drive”, International Transactions on Electrical Energy Systems, 29(1), e2678 (2019). https://doi.org/10.1002/etep.2678.
4. Dhamudia, S., Rathore, V., and Yadav, K.B. “Closedloop V/f control of symmetrical 6-Phase induction motor using cascaded H-bridge multilevel inverter”, In Advances in Smart Grid Automation and Industry 4.0, pp. 591-599, Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7675-1-59.
5. Rathore, V. and Yadav, K.B. “Direct torque control of asymmetrical multiphase (6-Phase) induction motor using modified space vector modulation”, In Recent Advances in Power Electronics and Drives, pp. 511- 516, Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-8586-9_45.
6. Rathore, V., Kumar, D., and Yadav, K.B. “A 5-level Ttype inverter fed six-phase induction motor drive for industrial applications”, International Journal of Electronics, 111(2), pp. 259-279 (2024). https://doi.org/10.1080/00207217.2022.2164068.
7. Gupta, K. K., Ranjan, A., Bhatnagar, P., et al. “Multilevel inverter topologies with reduced device count: A review”, IEEE Transactions on Power Electronics, 31(1), pp. 135-151 (2016). https://doi.org/10.1109/TPEL.2015.2405012.
8. Bana, P.R., Panda, K.P., Naayagi, R.T., et al. “Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation”, IEEE Access, 7, pp. 54888- 54909 (2019). https://doi.org/10.1109/ACCESS.2019.2913447.
9. Sawle, Y., Rathore, V., Kumar, D., et al. “Fault-tolerant analysis of 5-level modified T-type and packed U-Cell MLI”, International Journal of Electronics, 112(3), pp. 473-495 (2025). https://doi. org/ 10.1080/00207217.2024.2312088.
10. Sebaaly, F., Sharifzadeh, M., Kanaan, H.Y., et al. “Multilevel switching mode operation of finite set model predictive control for grid-connected packed Ecell (PEC) inverter”, IEEE Transactions on Industrial Electronics, 68(8), pp. 6992-7001 (2020). https://doi.org/10.1109/ TIE. 2020. 3003627.
11. Babaie, M., Sharifzadeh, M., Kanaan, H.Y., et al. “Switching-based optimized sliding-mode control for capacitor self-voltage balancing operation of sevenlevel PUC inverter”, IEEE Transactions on Industrial Electronics, 68(4), pp. 3044-3057 (2020). DOI: 10.1109/TIE.2020.2978704.
12. Ounejjar, Y., Al-Haddad, K., and Dessaint, L. A. “A novel six-band hysteresis control for the packed U cells seven-level converter: Experimental validation”, IEEE Transactions on Industrial Electronics, 59(10), pp. 3808-3816 (2011). DOI: 10.1109/ TIE.2011. 2161059.
13. Metri, J.I., Vahedi, H., Kanaan, H. Y., et al. “Real-time implementation of model-predictive control on seven level packed U-cell inverter”, IEEE Transactions on Industrial Electronics, 63(7), pp. 4180-4186 (2016).
14.Ansari, M.K., Azeem, A., Sarwar, A., et al. “Controltechniques of packed U-cell multilevel inverter: Acomprehensive Review’’, In International Conferenceon Intelligent Computing, Information and ControlSystems, pp. 442-452, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30465-2-49.
15.Sheir, A., Orabi, M., Ahmed, M.E., et al. “A highefficiency single-phase multilevel packed U cellinverter for photovoltaic applications”, In 2014 IEEE36th International Telecommunications EnergyConference (INTELEC), pp. 1-6 IEEE (2014). DOI: 10.1109/INTLEC.2014.6972164.
16.Vahedi, H. and Al-Haddad, K. “Real-timeimplementation of a seven-level packed U-cellinverter with a low-switching-frequency voltageregulator”, IEEE Transactions on Power Electronics,31(8), pp. 5967-5973 (2015). DOI: 10.1109/TPEL. 2015. 2490221.
17.Ounejjar, Y., Al-Haddad, K., and Dessaint, L.A. “Anovel six-band hysteresis control for the packed Ucells seven-level converter: Experimental validation”,IEEE Transactions on Industrial Electronics, 59(10),pp. 3808-3816 (2011). DOI: 10.1109/ TIE. 2011. 2161059.
18.Trabelsi, M., Bayhan, S., Ghazi, K. A., et al. “Finite-control-set model predictive control for grid-connected packed-U-cells multilevel inverter”, IEEETransactions on Industrial Electronics, 63(11), pp.7286-7295 (2016). DOI: 10.1109/TIE.2016.2558142.
19.Abarzadeh, M., Vahedi, H., and Al-Haddad, K. “Fastsensor-less voltage balancing and capacitor sizereduction in PUC5 converter using novel modulationmethod”, IEEE Transactions on IndustrialInformatics, 15(8), pp. 4394-4406 (2019). DOI:10.1109/ TII.2019. 2893739.
20.Iqbal, A., Levi, E., Jones, M., et al. “Generalizedsinusoidal PWM with harmonic injection formultiphase VSIs”, In 2006 37th IEEE PowerElectronics Specialists Conference, pp. 1-7 (2006). DOI:10.1109/pesc.2006.1712206.
21.López, Ó., Álvarez, J., Doval-Gandoy, J., et al. “Multilevelmultiphase space vector PWM algorithm’’, IEEE Trans.on Industrial Electronics, 55(5), pp. 1933-1942 (2008).DOI: 10.1109/TIE.2008.918466.
22.Dordevic, O., Jones, M., and Levi, E. “A comparisonof carrier-based and space vector PWM techniques forthree-level five-phase voltage source inverters”, IEEETrans. on Industrial Informatics, 9(2), pp. 609-619(2013). DOI: 10.1109/TII.2012.2220553.
23.Engku Ariff, E.A.R.B., Dordevic, O., and Jones, M.“Space vector PWM algorithm for a three-levelasymmetrical six-phase motor drive”, IET ElectricPower Applications, 13(11), pp. 1773-1782 (2019).https://doi.org/10.1049/iet-epa.2019.0059.
24.Gao, L. and Fletcher, J.E. “A space vector switchingstrategy for three-level five-phase inverter drives’’,IEEE Trans. on Indsutrial Electronics, 57(7), pp.2332-2343 (2010). DOI: 10.1109/ TIE.2009. 2033087.
25.Rathore, V. and Yadav, K.B. “Comparative efficiencyanalysis of 5-level dual three-phase multilevel inverterfed six-phase induction motor drive”, InternationalJournal of Numerical Modelling: ElectronicNetworks, Devices and Fields, 35(3), e2981 (2021). https://doi.org/ 10.1002/jnm.2981.
26.Rathore, V. and Yadav, K.B. “Analytical model basedperformance characteristics analysis of six-phaseinduction motor”, In Proceedings of the InternationalConference on Advances in Electronics, Electrical andComputational Intelligence (ICAEEC), Available atSSRN 3575381 (2019). http://dx.doi.org/ 10.2139/ ssrn.3575381.
27.Kumar, D., Nema, R.K., and Gupta, S. “Investigationof fault-tolerant capabilities of some recent multilevelinverter topologies”, International Journal ofElectronics, 108(11), pp. 1957-1976 (2021). https://doi.org/10. 1080/00207217.2020.1870752.
28.Rathore, V. and Yadav, K.B. “Experimental analysis of multilevel inverter fed six-phase induction motor forhigh power applications”, Revue Roumaine desSciences Techniques-Série Électrotechnique etÉnergétique, 67(4), pp. 389-394 (2022). https://journal.iem.pub.ro/rrst-ee/article/view/118.
29.Aryza, S., Irwanto, M., Lubis, Z., et al. “A noveltydesign of minimization of electrical losses in a vectorcontrolled induction machine drive”, In IOPConference Series: Materials Science andEngineering, 300(1), 012067 (2018). IOP Publishing. DOI: 10.1088/1757-899X/300/1/012067.
30.Zhang, Y., Jiao, J., Xu, D., et al. “Model predictivedirect power control of doubly fed inductiongenerators under balanced and unbalanced networkconditions”, IEEE Transactions on IndustryApplications, 56(1), pp. 771-786 (2019). DOI: 10.1109/TIA.2019.2947396.
31.Wiechmann, E.P., Aqueveque, P., Burgos, R., et al..“On the Efficiency of Voltage Source and CurrentSource Inverters for High-Power Drives”, IEEE Trans.on Industrial Electronics, 55(4), pp. 1771-1782.
Volume 32, Issue 5
Transactions on Computer Science & Engineering and Electrical Engineering
March and April 2025 Article ID:6630
  • Receive Date: 07 April 2022
  • Revise Date: 23 May 2023
  • Accept Date: 16 April 2025