Precise shape prediction of human heart left ventricle during diastole using fluid-solid simulation

Document Type : Research Article

Authors

School of Mechanical Engineering, Shiraz University, Shiraz, 71936-16548, Iran

Abstract

Using Fluid-Solid Interactions (FSI), this study presents the proper configuration and Boundary Conditions (BC) for precise prediction of shape and cardiac performance of human heart during diastole. The judgment is based upon comparison of deformations and volume change of left ventricle plus atrium with CT scan images for a healthy person. Usage of correct BC for left ventricle plus atrium provides more accurate results, in terms of volume of left ventricle variations compared to real values and differences are less than 1.3%. Also, shape change of ventricle compares well with scanned images. Three different configurations are constructed from CT images as initial geometries: model A; left ventricle with thick ventricular wall and mitral valve, as an example of hypertrophic case, model B; the original left ventricle and mitral valve from scanned images and model C, which is the model B plus the original atrium geometry. Using unsteady FSI, the difference of experimental numerical ventricle volumes is expectedly large for model A, due to hypertrophy. The difference between numerical results and experiments is 6% for model B and 1.25%, for the more complete model C. Therefore, closer agreement of model C with experiment and its feasibility for more involved cases is shown.

Keywords

Main Subjects


References:
 
1.World Health Organization, “Cardiovascular diseases”,https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases.
2.Badano, L.P., Kolias, T.J., Muraru, D., et al.“Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensionalspeckle tracking echocardiography: a consensusdocument of the EACVI/ASE/Industry Task Force tostandardize deformation imaging”, European HeartJournal-Cardiovascular Imaging, 19(6), pp. 591-600(2018). https://doi.org/10.1093/ehjci/jey042 
3.Lange, T. and Schuster, A. “Quantification ofmyocardial deformation applying CMR-feature-tracking—All about the left ventricle?”, Current HeartFailure Reports, 18, pp. 225-239 (2021).https://doi.org/10.1007/s11897-021-00515-0
4.Peirlinck, M., Sahli Costabal, F., Yao, J., et al. “Precisionmedicine in human heart modeling: Perspectives,challenges, and opportunities”, Biomechanics andModeling in Mechanobiology, 20, pp. 803-831 (2021).https://doi.org/10.1007/s10237-021-01421-z
5.Quarteroni, A. and Fedele, M. “Polygonal surfaceprocessing and mesh generation tools for the numericalsimulation of the cardiac function”, InternationalJournal for Numerical Methods in BiomedicalEngineering, 37(4), e3435 (2021).https://doi.org/10.1002/cnm.3435
6.Wang, D., Qian, Z., Vukicevic, M., et al. “3D printing,computational modeling, and artificial intelligence forstructural heart disease”, Cardiovascular Imaging,14(1), pp. 41-60 (2021).https://doi.org/10.1016/j.jcmg.2019.12.022
7.Garber, L., Khodaei, S., and Keshavarz Motamed, Z.“The critical role of lumped parameter models inpatient-specific cardiovascular simulations”, Archives ofComputational Methods in Engineering, 29(5), pp.2977-3000 (2022). https://doi.org/10.1007/s11831-021-09685-5
8.Fang, Y., Sun, W., Zhang, T., et al. “Recent advances onbioengineering approaches for fabrication of functionalengineered cardiac pumps: A review”, Biomaterials,280, 121298 (2022).https://doi.org/10.1016/j.biomaterials.2021.121298
9.Yadid, M., Oved, H., Silberman, E., et al.“Bioengineering approaches to treat the failing heart:from cell biology to 3D printing”, Nature ReviewsCardiology, 19(2), pp. 83-99 (2022).https://doi.org/10.1016/j.biomaterials.2021.121298
10.Fedele, M., Piersanti, R., Regazzoni, F., et al. “Acomprehensive and biophysically detailedcomputational model of the whole human heartelectromechanics”, Computer Methods in AppliedMechanics and Engineering, 410, pp. 115983 (2023).https://doi.org/10.1016/j.cma.2023.115983
11.Peskin, C.S. “The immersed boundary method”, ActaNumerica, 11, pp. 479-517 (2002).https://doi.org/10.1017/S0962492902000077
12.Yoganathan, A.P., Lemmon Jr, J.D., Kim, Y.H., et al. “Acomputational study of a thin-walled three-dimensionalleft ventricle during early systole”, Journal ofBiomechanical Engineering, 116(3), pp. 307-314(1994). https://doi.org/10.1115/1.2895735
13.Lemmon, J. and Yoganathan, A. “Computationalmodeling of left heart diastolic function: examination ofventricular dysfunction”, Journal of BiomechanicalEngineering, 122(4), pp. 297-303 (2000).https://doi.org/10.1115/1.1286559
14.Zheng, X., Seo, J.H., Vedula, V., et al. “Computationalmodeling and analysis of intracardiac flows in simple models of the left ventricle”, European Journal of Mechanics-B/Fluids, 35, pp. 31-39 (2012). https://doi.org/10.1016/j.euromechflu.2012.03.002
15. Nakamura, M., Wada, S., Mikami, T., et al. “A computational fluid mechanical study on the effects of opening and closing of the mitral orifice on a transmitral flow velocity profile and an early diastolic intraventricular flow”, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 45(4), pp. 913-922 (2002). https://doi.org/10.1299/jsmec.45.913
16. McQueen, D. and Peskin, C., “A three-dimensional computer model of the human heart for studying cardiac fluid dynamics” ACM SIGGRAPH Computer Graphics, 34(1), pp. 56-60 (2000). https://doi.org/10.1145/563788.604453
17. Vierendeels, J.A., Riemslagh, K., Dick, E., et al. “Computer simulation of intraventricular flow and pressure gradients during diastole”, Journal of Biomechanical Engineering, 122(6), pp. 667-674 (2000). https://doi.org/10.1115/1.1318941
18. Watanabe, H., Sugiura, S., Kafuku, H., et al. “Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method”, Biophysical Journal, 87(3), pp. 2074-2085 (2004). https://doi.org/10.1529/biophysj.103.035840
19. Cheng, Y., Oertel, H. and Schenkel, T. “Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase”, Annals of Biomedical Engineering, 33(5), pp. 567-576 (2005). https://doi.org/10.1007/s10439-005-4388-9
20. Lau, K.D., Diaz, V., Scambler, P., et al. “Mitral valve dynamics in structural and fluid–structure interaction models” Medical Engineering & Physics, 32(9), pp. 1057-1064 (2010). https://doi.org/10.1016/j.medengphy.2010.07.008
21. Dahl, S.K., Vierendeels, J., Degroote, J., et al. “FSI simulation of asymmetric mitral valve dynamics during diastolic filling”, Computer Methods in Biomechanics and Biomedical Engineering, 15(2), pp. 121-130 (2012). https://doi.org/10.1080/10255842.2010.517200
22. Arefin, M. and Morsi, Y. “Fluid structure interaction (FSI) simulation of the Left Ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave)”, Australasian Physical & Engineering Sciences in Medicine, 37(2), pp. 413-423 (2014). https://doi.org/10.1007/s13246-014-0250-4
23. Su, B., Zhong, L., Wang, X.K., et al. “Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach”, Computer Methods and Programs in Biomedicine, 113(2), pp. 474-482 (2014). https://doi.org/10.1016/j.cmpb.2013.11.009
24. Arefin, M. “An investigation on the effects of the angles between the mitral and aortic orifice during diastolic period using FSI”, Pathophysiology, 24(3), pp. 133-153 (2017). https://doi.org/10.1016/j.pathophys.2017.03.002
25. Nakamura, M., Wada, S., Mikami, T., et al. “Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color M-mode Doppler echocardiograms”, Biomechanics and Modeling in Mechanobiology, 2(2), pp. 59-72 (2003). https://doi.org/10.1007/s10237-003-0028-1
26. Tang, D., Yang, C., Geva, T., et al. “Image-based patient-specific ventricle models with fluid–structure interaction for cardiac function assessment and surgical design optimization”, Progress in Pediatric Cardiology, 30(1-2), pp. 51-62 (2010). https://doi.org/10.1016/j.ppedcard.2010.09.007
27. Taylor, T. and Yamaguchi, T. “Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics”, Medical Engineering & Physics, 17(8), pp. 602-608 (1995). https://doi.org/10.1016/1350-4533(95)00017-H
28. Su, B., Tan, R.S., Tan, J.L., et al. “Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated”, Journal of Biomechanics, 49(7), pp. 1199-1205 (2016). https://doi.org/10.1016/j.jbiomech.2016.03.008
29. Su, B., Zhang, J.M., Tang, H.C., et al. “Patient-specific blood flows and vortex formations in patients with hypertrophic cardiomyopathy using computational fluid dynamics”, 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), pp. 276-280 (2014). https://doi.org/10.1109/IECBES.2014.7047502
30. Saber, N., Gosman, R.A.D., Wood, N.B., et al. “Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience”, Annals of Biomedical Engineering, 29(4), pp. 275-283 (2001). https://doi.org/10.1114/1.1359452
31. Ebbers, T., Wigstro, L., Bolger, A.F., et al. “Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart”, Journal of Biomechanical Engineering, 124(3), pp. 288-293 (2002). https://doi.org/10.1115/1.1468866
32. Long, Q., Merrifield, R., Xu, X.Y., et al. “Intra-ventricular blood flow simulation with patient specific geometry," In 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, pp. 126-129 (2003). https://doi.org/10.1109/ITAB.2003.1222489
33. Long, Q., Merrifield, R., Xu, X.Y., et al. “Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging”, Proceedings of the Institution of Mechanical Engineers,  Part H: Journal of Engineering in Medicine, 222(4), pp. 475-485 (2008).  https://doi.org/10.1243/09544119JEIM310 
34. Doenst, T., Spiegel, K., Reik, M., et al. “Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction”, The Annals of Thoracic Surgery, 87(4), pp. 1187-1195 (2009). https://doi.org/10.1016/j.athoracsur.2009.01.036 
35. Khalafvand, S.S., Yin-Kwee Ng, E., Zhong, L., et al. “Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study”, Computers in Biology and Medicine, 42(8), pp. 863-870 (2012). https://doi.org/10.1016/j.compbiomed.2012.06.010 
36. Chen, L., Liu, J., Hong, H., et al. “Medical image-based analysis of flow in heart with congenital heart disease: Numerical simulation of intraventricular flow”, In 2015 10th Asian Control Conference (ASCC), pp. 1-6 (2015).  https://doi.org/10.1109/ASCC.2015.7244764 
37. Chnafa, C., Mendez, S., and Nicoud, F. “Image-based large-eddy simulation in a realistic left heart”, Computers & Fluids, 94, pp. 173-187 (2014). https://doi.org/10.1016/j.compfluid.2014.01.030 
38. Kerckhoffs, R.C., Faris, O.P., Bovendeerd, P.H., et al. “Timing of depolarization and contraction in the paced canine left ventricle: model and experiment”, Journal of Cardiovascular Electrophysiology, 14, pp. S188-S195 (2003). https://doi.org/10.1046/j.1540.8167.90310.x 
39. Sermesant, M., Moireau, P., Camara, O., et al. “Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties”, Medical Image Analysis, 10(4), pp. 642-656 (2006). https://doi.org/10.1016/j.media.2006.04.002 
40. Keldermann, R., Nash, M., Gelderblom, H., et al. “Electromechanical wavebreak in a model of the human left ventricle”, American Journal of Physiology-Heart and Circulatory Physiology, 299(1), pp. H134-H143 (2010). https://doi.org/10.1152/ajpheart.00862.2009 
41. Nordsletten, D., Niederer, S., Nash, M., et al. “Coupling multi-physics models to cardiac mechanics”, Progress in Biophysics and Molecular Biology, 104(1-3), pp. 77-88 (2011). https://doi.org/10.1016/j.pbiomolbio.2009.11.001 
42. Gurev, V., Lee, T., Constantino, J., et al. “Models of cardiac electromechanics based on individual hearts imaging data” Biomechanics and Modeling in Mechanobiology, 10(3), pp. 295-306 (2011). https://doi.org/10.1007/s10237-010-0235-5 
43. Pourmand, D.R., “Simulation of beating heart considering fluid solid interface”, Shiraz University, Mechanical Engineering Department (2012). 
44. Nordsletten, D., McCormick, M., Kilner, P., et al. “Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function”, International Journal for Numerical Methods in Biomedical Engineering, 27(7), pp. 1017-1039 (2011). https://doi.org/10.1002/cnm.1405 
45. Gao, H., Ma, X., Qi, N., et al. “A finite strain nonlinear human mitral valve model with fluid‐structure interaction”, International Journal for Numerical Methods in Biomedical Engineering, 30(12), pp. 1597-1613 (2014). https://doi.org/10.1002/cnm.2691 
46. Toma, M., Jensen, M., Einstein, D., et al. “Fluid–structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure”, Annals of Biomedical Engineering, 44(4), pp. 942-953 (2016). https://doi.org/10.1007/s10439-015-1385-5 
47. Seo, J., Vedula, V., Abraham, T., et al. “Effect of the mitral valve on diastolic flow patterns”, Physics of Fluids, 26(12), 121901 (2014). https://doi.org/10.1063/1.4904094 
48. Kheirandish, S., Alishahi, M.M. and Abuali, O. “Numerical modeling of blood flow in left ventricle considering mitral valve during diastole phase”, ISME2015-10100951724, Tehran, Iran (2015). 
49. Si, W., Liao, X., Qin, J., et al. “Computational modeling of fluid–structure interaction between blood flow and mitral valve”, In Computational Biomechanics for Medicine, Springer, pp. 31-41 (2019).https://doi.org/10.1007/978-3-319-75589-2_4 
50. Monfared, M., Alishahi, M.M., and Alishahi, M. “Precise fluid-solid simulation of human left ventricle along with aortic valve during systole”, WSEAS Transactions on Fluid Mechanics, 17, pp. 18-38 (2022). https://doi.org/10.37394/232013.2022.17.3 
51. Messerli, F., Ventura, H., Elizardi, D., et al. “Hypertension and sudden death: increased ventricular ectopic activity in left ventricular hypertrophy” The American Journal of Medicine, 77(1), pp. 18-22 (1984). https://doi.org/10.1016/0002-9343(84)90430-3 
52. Devereux, R., Alonso, D., Lutas, E., et al. “Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings”, The American Journal of Cardiology, 57(6), pp. 450-458 (1986). https://doi.org/10.1016/0002-9149(86)90771-X 
53. Hall, J.E. and Hall, M.E., Guyton and Hall Textbook of Medical Physiology E-Book., Elsevier Health Sciences (2020). 
54. Xiaodan, Z., Tan, R.S., Garg, P., et al. “Impact of age, sex and ethnicity on intra-cardiac flow components and left ventricular kinetic energy derived from 4D flow  CMR”, International Journal of Cardiology, 336, pp. 106-112 (2021). https://doi.org/10.1016/j.ijcard.2021.05.035.
55. Holzapfel, G.A., Gasser, T.C., and Ogden, R.W. “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of Elasticity and the Physical Science of Solids, 61(1), pp. 1-48 (2000). https://doi.org/10.1023/A:1010835316564.
Volume 32, Issue 2
Transactions on Mechanical Engineering
January and February 2025 Article ID:6504
  • Receive Date: 10 February 2022
  • Revise Date: 09 October 2023
  • Accept Date: 16 October 2024