References:
1.Shamloo, A., Vatankhah, P., and Bijarchi, M.A.“Numerical optimization and inverse study of amicrofluidic device for blood plasma separation”,European Journal of Mechanics-B/Fluids, 57, pp. 31-39 (2016).https://doi.org/10.1016/j.euromechflu.2016.02.002.
2.Ahmadi, M.-A., Ahmadi, M.H., Alavi, M.F., et al.“Determination of thermal conductivity ratio ofCuO/ethylene glycol nanofluid by connectionistapproach”, Journal of the Taiwan Institute ofChemical Engineers, 91, pp. 383-395 (2018).https://doi.org/10.1016/j.jtice.2018.06.003.
3.Alhuyi Nazari, M., Ahmadi, M.H., Lorenzini, G., et al.“Modeling thermal conductivity ratio of CuO/ethylene glycol nanofluid by using artificial neural network”,Defect and Diffusion Forum, 388, pp. 39-43 (2018).https://doi.org/10.4028/www.scientific.net/DDF.388.39.
4.Joensson, H.N. and Andersson-Svahn, H. “Dropletmicrofluidics—a tool for protein engineering andanalysis”, Lab on a Chip, 11(24), pp. 4144-4147(2011). https://doi.org/10.1039/C1LC90102H.
5.Zhu, P. and Wang, L. “Passive and active dropletgeneration with microfluidics: a review”, Lab on aChip, 17(1), pp. 34-75 (2017).https://doi.org/10.1039/c6lc01018k.
6.Chien, L.-H., Liao, W.-R., Ghalambaz, M., et al.“Experimental study on convective boiling flow andheat transfer in a microgap enhanced with a staggeredarrangement of nucleated micro-pin-fins”,International Journal of Heat and Mass Transfer, 144,p.12 (2019).https://doi.org/10.1016/j.ijheatmasstransfer.2019.118653.
7.Chen, C.-Y., Chen, C.-H., and Lo, L.-W. “Breakupand separation of micromagnetic droplets in aperpendicular field”, Journal of Magnetism andMagnetic Materials, 310(2), pp. 2832-2834 (2007).https://doi.org/10.1016/j.jmmm.2006.10.1064.
8.Gijs, M.A., Lacharme, F., and Lehmann, U.“Microfluidic applications of magnetic particles forbiological analysis and catalysis”, Chemical Reviews,110(3), pp. 1518-1563 (2009).https://doi.org/10.1021/cr9001929.
9.Ray, A., Varma, V., Jayaneel, P., et al. “On demandmanipulation of ferrofluid droplets by magneticfields”, Sensors and Actuators B: Chemical, 242, pp.760-768 (2017).https://doi.org/10.1016/j.snb.2016.11.115.
10.Ganguly, R., Sen, S., and Puri, I.K. “Heat transferaugmentation using a magnetic fluid under theinfluence of a line dipole”, Journal of Magnetism andMagnetic Materials, 271(1), pp. 63-73 (2004).https://doi.org/10.1016/j.jmmm.2003.09.015.
11.Ding, Y., Howes, P.D., and deMello, A.J. “Recentadvances in droplet microfluidics”, Analyticalchemistry, 92(1), pp. 132-149 (2019).https://doi.org/10.1021/acs.analchem.9b05047.
12.Raveshi, M.R., Abdul Halim, M.S., Agnihotri, S.N., etal. “Curvature in the reproductive tract alters sperm–surface interactions”, Nature communications, 12(1),3446 (2021).https://doi.org/10.1038/s41467-021-23773-x.
13.Agnihotri, S.N., Raveshi, M.R., Bhardwaj, R., et al.“Droplet breakup at the entrance to a bypass channelin a microfluidic system”, Physical Review Applied,11(3), 034020 (2019).https://doi.org/10.1103/PhysRevApplied.11.034020.
14.Agnihotri, S.N., Raveshi, M.R., Bhardwaj, R., et al.“Microvalves for integrated selective dropletgeneration, splitting and merging on a chip”,Microfluidics Nanofluidics, 25(11), pp. 1-13 (2021).https://doi.org/10.1007/s10404-021-02487-y.
15.Mashaghi, S., Abbaspourrad, A., Weitz, D.A., et al.“Droplet microfluidics: A tool for biology, chemistryand nanotechnology”, TrAC Trends in AnalyticalChemistry, 82, pp. 118-125 (2016).https://doi.org/10.1016/j.trac.2016.05.019.
16.Tae, S.-J. and Cho, K. “Effect of flow direction ontwo-phase flow distribution of refrigerants at a T-junction”, Journal of Mechanical Science Technology,20(5), pp. 717-727 (2006).https://doi.org/10.1007/Bf02915989.
17.Jhun, C.G., Song, J.-K., and Gwag, J.S. “Highlymono-dispersed liquid crystal capsules with core–shell structure”, Physica Scripta, 94(5), 055001(2019). https://doi.org/10.1088/1402-4896/ab0990.
18.Leshansky, A., and Pismen, L. “Breakup of drops in amicrofluidic T junction”, Physics of Fluids, 21(2), p. 6(2009). https://doi.org/10.1063/1.3078515.
19.Bedram, A. and Moosavi, A. “Numerical investigation of droplets breakup in a microfluidic T-junction”, AppliedMechanics and Materials, 110, pp. 3269-3277 (2012).https://doi.org/10.4028/www.scientific.net/AMM.110-116.3269.
20.Bedram, A. and Moosavi, A. “Droplet breakup in anasymmetric microfluidic T junction”, The EuropeanPhysical Journal E, 34(8), p. 8 (2011).https://doi.org/10.1140/epje/i2011-11078-7.
21.Leshansky, A., Afkhami, S., Jullien, M.-C., et al.“Obstructed breakup of slender drops in a microfluidic Tjunction”, Physical Review Letters, 108(26), p. 5 (2012).https://doi.org/10.1103/PhysRevLett.108.264502.
22.Jullien, M.-C., Ching, M.-J.T.M., Cohen, C., et al.“Droplet breakup in microfluidic T-junctions at smallcapillary numbers”, Physics of Fluids, 21(7), p. 7(2009). https://doi.org/10.1063/1.3170983.
23.Bedram, A., Darabi, A.E., Moosavi, A., et al.“Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sizeddroplets in micro-and nano-fluidic systems”, Journalof Fluids Engineering, 137(3), p. 9 (2015).https://doi.org/10.1115/1.4028499.
24.Salkin, L., Schmit, A., Courbin, L., et al. “Passivebreakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models”, Lab on a Chip, 13(15), pp. 3022-3032 (2013). https://doi.org/10.1039/c3lc00040k.
25.Jangir, P. and Jana, A.K. “CFD simulation of dropletsplitting at microfluidic T-junctions in oil–water two-phase flow using conservative level set method”,Journal of the Brazilian Society of MechanicalSciences and Engineering, 41(2), p. 16 (2019).https://doi.org/10.1007/s40430-019-1569-2.
26.Aboutalebi, M., Bijarchi, M.A., Shafii, M.B., et al.“Numerical investigation on splitting of ferrofluidmicrodroplets in T-junctions using an asymmetricmagnetic field with proposed correlation”, Journal ofMagnetism and Magnetic Materials, 447, pp. 139-149(2018). https://doi.org/10.1016/j.jmmm.2017.09.053.
27.Samie, M., Salari, A., and Shafii, M.B. “Breakup ofmicrodroplets in asymmetric T junctions”, PhysicalReview E, 87(5), p. 8 (2013).https://doi.org/10.1103/PhysRevE.87.053003.
28.Raveshi, M.R., Agnihotri, S.N., Sesen, M., et al.“Selective droplet splitting using single layermicrofluidic valves”, Sensors and Actuators B:Chemical, 292, pp. 233-240 (2019).https://doi.org/10.1016/j.snb.2019.04.115.
29.Agnihotri, S.N., Raveshi, M.R., Bhardwaj, R., et al.“Microfluidic valves for selective on-chip dropletsplitting at multiple sites”, Langmuir, 36(5), pp. 1138-1146 (2020).https://doi.org/10.1021/acs.langmuir.9b03515.
30.Wu, Y., Fu, T., Zhu, C., et al. “Bubble coalescence ata microfluidic T-junction convergence: from collidingto squeezing”, Microfluidics and Nanofluidics, 16(1-2), pp. 275-286 (2014).https://doi.org/10.1007/s10404-013-1211-z.
31.Nguyen, N.-T., Zhu, G., Chua, Y.-C., et al.“Magnetowetting and sliding motion of a sessileferrofluid droplet in the presence of a permanentmagnet”, Langmuir, 26(15), pp. 12553-12559 (2010).https://doi.org/10.1021/la101474e.
32.Li, X., Dong, Z.-Q., Yu, P., et al. “Numericalinvestigation of magnetic multiphase flows by thefractional-step-based multiphase lattice Boltzmannmethod”, Physics of Fluids, 32(8), p. 22 (2020).https://doi.org/10.1063/5.0020903.
33.Li, X., Yu, P., Niu, X.-D., et al. “A magnetic fieldcoupling lattice Boltzmann model and its applicationon the merging process of multiple-ferrofluid-dropletsystem”, Applied Mathematics and Computation, 393,p.24 (2021).https://doi.org/10.1016/j.amc.2020.125769.
34.Mu-Feng, C., Xiang, L., Xiao-Dong, N., et al.“Sedimentation of two non-magnetic particles in magnetic fluid”, Acta Physica Sinica, 66(16), p. 10 (2017). https://doi.org/10.7498/aps.66.164703.
35.Afkhami, S., Tyler, A., Renardy, Y., et al.“Deformation of a hydrophobic ferrofluid dropletsuspended in a viscous medium under uniformmagnetic fields”, Journal of Fluid Mechanics, 663, pp. 358-384 (2010).https://doi.org/10.1017/S0022112010003551.
36.Majidi, M., Bijarchi, M.A., Arani, A.G., et al.“Magnetic field-induced control of a compoundferrofluid droplet deformation and breakup in shearflow using a hybrid lattice Boltzmann-finite difference method”, International Journal of Multiphase Flow,146, 103846 (2022).https://doi.org/10.1016/j.ijmultiphaseflow.2021.103846.
37.Bijarchi, M.A., Favakeh, A., and Shafii, M.B. “Theeffect of a non-uniform pulse-width modulatedmagnetic field with different angles on the swingingferrofluid droplet formation”, Journal of Industrialand Engineering Chemistry, 84, pp. 106-119 (2020).https://doi.org/10.1016/j.jiec.2019.12.026.
38.Favakeh, A., Bijarchi, M.A., and Shafii, M.B.“Ferrofluid droplet formation from a nozzle usingalternating magnetic field with different magnetic coilpositions”, Journal of Magnetism and MagneticMaterials, 498, p. 6 (2020).https://doi.org/10.1016/j.jmmm.2019.166134.
39.Bijarchi, M.A., Favakeh, A., Alborzi, S., et al.“Experimental investigation of on-demand ferrofluiddroplet generation in microfluidics using a Pulse-WidthModulation magnetic field with proposed correlation”,Sensors and Actuators B: Chemical, 329, p. 14 (2021).https://doi.org/10.1016/j.snb.2020.129274.
40.Bijarchi, M.A., Favakeh, A., Mohammadi, K., et al.“Ferrofluid droplet breakup process and neckevolution under steady and pulse-width modulatedmagnetic fields”, Journal of Molecular Liquids, 343,117536 (2021).https://doi.org/10.1016/j.molliq.2021.117536.
41.Bijarchi, M.A., Yaghoobi, M., Favakeh, A., et al. “On-demand ferrofluid droplet formation with non-linearmagnetic permeability in the presence of high non-uniform magnetic fields”, Scientific Reports, 12(1), p.10868 (2022).https://doi.org/10.1038/s41598-022-14624-w.
42.Bijarchi, M.A., Favakeh, A., Sedighi, E., et al.“Ferrofluid droplet manipulation using an adjustablealternating magnetic field”, Sensors and Actuators A:Physical, 301, p. 111753 (2020).
43.Youesfi, M., Sarkhosh, M.H., Bijarchi, M.A., et al.“Investigating the Response of Ferrofluid Droplets in aUniform Rotating Magnetic Field: Towards Splitting and Merging”, 2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1-5 (2023). https://doi.org/10.1109/MARSS58567.2023.10294170.
44.Azizian, P., Mohammadrashidi, M., Abbas Azimi, A.,et al. “Magnetically driven manipulation ofnonmagnetic liquid marbles: Billiards with liquidmarbles”, Micromachines, 14(1), p. 49 (2022).https://doi.org/10.3390/mi14010049.
45.Sarkhosh, M.H., Yousefi, M., Bijarchi, M.A., et al.“Manipulation of ferrofluid marbles and dropletsusing repulsive force in magnetic digitalmicrofluidics”, Sensors Actuators A: Physical, 363,114733 (2023).https://doi.org/10.1016/j.sna.2023.114733.
46.Zarei Saleh Abad, M., EbrahimiâDehshali, M.,Bijarchi, M.A., et al. “Visualization of pool boilingheat transfer of magnetic nanofluid”, Heat Transfer-Asian Research, 48(7), pp. 2700-2713 (2019).https://doi.org/10.1002/htj.21498.
47.Wu, Y., Fu, T., Ma, Y., et al. “Active control offerrofluid droplet breakup dynamics in a microfluidicT-junction”, Microfluidics and Nanofluidics, 18(1),pp. 19-27 (2015).https://doi.org/10.1007/s10404-014-1414-y.
48.Aboutalebi, M., Shafii, M.B., and KazemzadehHannani, S. “Numerical study on the ferrofluid dropletsplitting in a T-junction with branches of unequalwidths using asymmetric magnetic field”, Journal ofApplied Computational Mechanics, 9(2), pp. 357-370(2023).https://doi.org/10.22055/JACM.2021.36722.2892.
49.Bijarchi, M.A., Dizani, M., Honarmand, M., et al.“Splitting dynamics of ferrofluid droplets inside amicrofluidic T-junction using a pulse-widthmodulated magnetic field in micro-magnetofluidics”,Soft Matter, 17(5), pp. 1317-1329 (2021).https://doi.org/10.1039/d0sm01764g.
50.Chen, C.-Y., Chen, C.-H., and Lee, W.-F.“Experiments on breakups of a magnetic fluid dropthrough a micro-orifice”, Journal of Magnetism andMagnetic Materials, 321(20), pp. 3520-3525 (2009).https://doi.org/10.1016/j.jmmm.2009.06.066.
51.Chang, C.-W., Cheng, Y.-T., Tsai, C.-Y., et al.“Periodic flow patterns of the magnetic fluid inmicrochannel”, Journal of Magnetism and MagneticMaterials, 310(2), pp. 2844-2846 (2007).https://doi.org/10.1016/j.jmmm.2006.11.064.
52.Basu, A.S. “Droplet morphometry and velocimetry(DMV): a video processing software for time-resolved, label-free tracking of droplet parameters”,Lab on a Chip, 13(10), pp. 1892-1901 (2013).https://doi.org/10.1039/c3lc50074h.
53.Bijarchi, M.A. and Shafii, M.B. “Experimentalinvestigation on the dynamics of on-demand ferrofluid drop formation under a pulse-width-modulated nonuniform magnetic field”, Langmuir, 36(26), pp. 7724-7740 (2020). https://doi.org/10.1021/acs.langmuir.0c00097.
54.Mohammadrashidi, M., Bijarchi, M.A., Shafii, M.B.,et al. “Experimental and theoretical investigation onthe dynamic response of ferrofluid liquid marbles tosteady and pulsating magnetic fields”, Langmuir,39(6), pp. 2246-2259 (2023).https://doi.org/10.1021/acs.langmuir.2c02811.
55.Mohammadrashidi, M., Azizian, P., Bijarchi, M.A., etal. “Vibration and jumping of ferrofluid marbles under an initial magnetic perturbation”, Langmuir, 39(27),pp. 9406-9417 (2023).https://doi.org/10.1021/acs.langmuir.3c00894.