The variations of breakup and non-breakup regions for ferrofluid microdroplets in T-junctions with a proposed correlation

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Sharif University of Technology, P. O. BOX: 11155_9567, Tehran, Iran

2 Energy and Environment Research Center, Energy Management Group, Niroo Research Institute, Tehran, Iran

Abstract

Lots of attention has been paid to microfluidic and nanofluidic instruments in recent decades. One of the interesting instruments in this field that has attracted scientists is T-junctions. This paper reports an empirical study on the variation of breakup and non-breakup regions for ferrofluid microdroplets in symmetrical T-junctions under an asymmetrical magnetic field in the center of the junction. The asymmetrical magnetic field was generated using a permanent magnet on the right side of the T-junction. During the tests, ferrofluid microdroplets with different lengths and various velocities were entered into the T-junction and were influenced by an asymmetrical magnetic field. Results show that the increment in the magnetic flux density causes a higher possibility of non-breakup for ferrofluid microdroplets. Therefore, the breakup and non-breakup region in the diagram of non-dimensional length versus Ca number shifts upward. On the other hand, it was observed that the increment in Ca number is a key factor in breaking the microdroplets in the T-junction. Finally, a correlation was proposed to predict the breakup and non-breakup region due to different amounts of magnetic flux density and Ca number.

Keywords

Main Subjects


References:
1.Shamloo, A., Vatankhah, P., and Bijarchi, M.A.“Numerical optimization and inverse study of amicrofluidic device for  blood plasma separation”,European Journal of Mechanics-B/Fluids, 57, pp. 31-39 (2016).https://doi.org/10.1016/j.euromechflu.2016.02.002.
2.Ahmadi, M.-A., Ahmadi, M.H., Alavi, M.F., et al.“Determination of thermal conductivity ratio ofCuO/ethylene glycol nanofluid by connectionistapproach”, Journal of the Taiwan Institute ofChemical Engineers, 91, pp. 383-395 (2018).https://doi.org/10.1016/j.jtice.2018.06.003.
3.Alhuyi Nazari, M., Ahmadi, M.H., Lorenzini, G., et al.“Modeling thermal conductivity ratio of CuO/ethylene glycol nanofluid by using artificial neural network”,Defect and Diffusion Forum, 388, pp. 39-43 (2018).https://doi.org/10.4028/www.scientific.net/DDF.388.39.
4.Joensson, H.N. and Andersson-Svahn, H. “Dropletmicrofluidics—a tool for protein engineering andanalysis”, Lab on a Chip, 11(24), pp. 4144-4147(2011). https://doi.org/10.1039/C1LC90102H.
5.Zhu, P. and Wang, L. “Passive and active dropletgeneration with microfluidics: a review”, Lab on aChip, 17(1), pp. 34-75 (2017).https://doi.org/10.1039/c6lc01018k.
6.Chien, L.-H., Liao, W.-R., Ghalambaz, M., et al.“Experimental study on convective boiling flow andheat transfer in a microgap enhanced with a staggeredarrangement of nucleated micro-pin-fins”,International Journal of Heat and Mass Transfer, 144,p.12 (2019).https://doi.org/10.1016/j.ijheatmasstransfer.2019.118653.
7.Chen, C.-Y., Chen, C.-H., and Lo, L.-W. “Breakupand separation of micromagnetic droplets in aperpendicular field”, Journal of Magnetism andMagnetic Materials, 310(2), pp. 2832-2834 (2007).https://doi.org/10.1016/j.jmmm.2006.10.1064.
8.Gijs, M.A., Lacharme, F., and Lehmann, U.“Microfluidic applications of magnetic particles forbiological analysis and catalysis”, Chemical Reviews,110(3), pp. 1518-1563 (2009).https://doi.org/10.1021/cr9001929.
9.Ray, A., Varma, V., Jayaneel, P., et al. “On demandmanipulation of ferrofluid droplets by magneticfields”, Sensors and Actuators B: Chemical, 242, pp.760-768 (2017).https://doi.org/10.1016/j.snb.2016.11.115.
10.Ganguly, R., Sen, S., and Puri, I.K. “Heat transferaugmentation using a magnetic fluid under theinfluence of a line dipole”, Journal of Magnetism andMagnetic Materials, 271(1), pp. 63-73 (2004).https://doi.org/10.1016/j.jmmm.2003.09.015.
11.Ding, Y., Howes, P.D., and deMello, A.J. “Recentadvances in droplet microfluidics”, Analyticalchemistry, 92(1), pp. 132-149 (2019).https://doi.org/10.1021/acs.analchem.9b05047.
12.Raveshi, M.R., Abdul Halim, M.S., Agnihotri, S.N., etal. “Curvature in the reproductive tract alters sperm–surface interactions”, Nature communications, 12(1),3446 (2021).https://doi.org/10.1038/s41467-021-23773-x.
13.Agnihotri, S.N., Raveshi, M.R., Bhardwaj, R., et al.“Droplet breakup at the entrance to a bypass channelin a microfluidic system”, Physical Review Applied,11(3), 034020 (2019).https://doi.org/10.1103/PhysRevApplied.11.034020.
14.Agnihotri, S.N., Raveshi, M.R., Bhardwaj, R., et al.“Microvalves for integrated selective dropletgeneration, splitting and merging on a chip”,Microfluidics Nanofluidics, 25(11), pp. 1-13 (2021).https://doi.org/10.1007/s10404-021-02487-y.
15.Mashaghi, S., Abbaspourrad, A., Weitz, D.A., et al.“Droplet microfluidics: A tool for biology, chemistryand nanotechnology”, TrAC Trends in AnalyticalChemistry, 82, pp. 118-125 (2016).https://doi.org/10.1016/j.trac.2016.05.019.
16.Tae, S.-J. and Cho, K. “Effect of flow direction ontwo-phase flow distribution of refrigerants at a T-junction”, Journal of Mechanical Science Technology,20(5), pp. 717-727 (2006).https://doi.org/10.1007/Bf02915989.
17.Jhun, C.G., Song, J.-K., and Gwag, J.S. “Highlymono-dispersed liquid crystal capsules with core–shell structure”, Physica Scripta, 94(5), 055001(2019). https://doi.org/10.1088/1402-4896/ab0990.
18.Leshansky, A., and Pismen, L. “Breakup of drops in amicrofluidic T junction”, Physics of Fluids, 21(2), p. 6(2009). https://doi.org/10.1063/1.3078515.
19.Bedram, A. and Moosavi, A. “Numerical investigation of droplets breakup in a microfluidic T-junction”, AppliedMechanics and Materials, 110, pp. 3269-3277 (2012).https://doi.org/10.4028/www.scientific.net/AMM.110-116.3269.
20.Bedram, A. and Moosavi, A. “Droplet breakup in anasymmetric microfluidic T junction”, The EuropeanPhysical Journal E, 34(8), p. 8 (2011).https://doi.org/10.1140/epje/i2011-11078-7.
21.Leshansky, A., Afkhami, S., Jullien, M.-C., et al.“Obstructed breakup of slender drops in a microfluidic Tjunction”, Physical Review Letters, 108(26), p. 5 (2012).https://doi.org/10.1103/PhysRevLett.108.264502.
22.Jullien, M.-C., Ching, M.-J.T.M., Cohen, C., et al.“Droplet breakup in microfluidic T-junctions at smallcapillary numbers”, Physics of Fluids, 21(7), p. 7(2009). https://doi.org/10.1063/1.3170983.
23.Bedram, A., Darabi, A.E., Moosavi, A., et al.“Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sizeddroplets in micro-and nano-fluidic systems”, Journalof Fluids Engineering, 137(3), p. 9 (2015).https://doi.org/10.1115/1.4028499.
24.Salkin, L., Schmit, A., Courbin, L., et al. “Passivebreakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models”, Lab on a Chip, 13(15), pp. 3022-3032 (2013). https://doi.org/10.1039/c3lc00040k.
25.Jangir, P. and Jana, A.K. “CFD simulation of dropletsplitting at microfluidic T-junctions in oil–water two-phase flow using conservative level set method”,Journal of the Brazilian Society of MechanicalSciences and Engineering, 41(2), p. 16 (2019).https://doi.org/10.1007/s40430-019-1569-2.
26.Aboutalebi, M., Bijarchi, M.A., Shafii, M.B., et al.“Numerical investigation on splitting of ferrofluidmicrodroplets in T-junctions using an asymmetricmagnetic field with proposed correlation”, Journal ofMagnetism and Magnetic Materials, 447, pp. 139-149(2018). https://doi.org/10.1016/j.jmmm.2017.09.053.
27.Samie, M., Salari, A., and Shafii, M.B. “Breakup ofmicrodroplets in asymmetric T junctions”, PhysicalReview E, 87(5), p. 8 (2013).https://doi.org/10.1103/PhysRevE.87.053003.
28.Raveshi, M.R., Agnihotri, S.N., Sesen, M., et al.“Selective droplet splitting using single layermicrofluidic valves”, Sensors and Actuators B:Chemical, 292, pp. 233-240 (2019).https://doi.org/10.1016/j.snb.2019.04.115.
29.Agnihotri, S.N., Raveshi, M.R., Bhardwaj, R., et al.“Microfluidic valves for selective on-chip dropletsplitting at multiple sites”, Langmuir, 36(5), pp. 1138-1146 (2020).https://doi.org/10.1021/acs.langmuir.9b03515.
30.Wu, Y., Fu, T., Zhu, C., et al. “Bubble coalescence ata microfluidic T-junction convergence: from collidingto squeezing”, Microfluidics and Nanofluidics, 16(1-2), pp. 275-286 (2014).https://doi.org/10.1007/s10404-013-1211-z.
31.Nguyen, N.-T., Zhu, G., Chua, Y.-C., et al.“Magnetowetting and sliding motion of a sessileferrofluid droplet in the presence of a permanentmagnet”, Langmuir, 26(15), pp. 12553-12559 (2010).https://doi.org/10.1021/la101474e.
32.Li, X., Dong, Z.-Q., Yu, P., et al. “Numericalinvestigation of magnetic multiphase flows by thefractional-step-based multiphase lattice Boltzmannmethod”, Physics of Fluids, 32(8), p. 22 (2020).https://doi.org/10.1063/5.0020903.
33.Li, X., Yu, P., Niu, X.-D., et al. “A magnetic fieldcoupling lattice Boltzmann model and its applicationon the merging process of multiple-ferrofluid-dropletsystem”, Applied Mathematics and Computation, 393,p.24 (2021).https://doi.org/10.1016/j.amc.2020.125769.
34.Mu-Feng, C., Xiang, L., Xiao-Dong, N., et al.“Sedimentation of two non-magnetic particles in magnetic fluid”, Acta Physica Sinica, 66(16), p. 10 (2017). https://doi.org/10.7498/aps.66.164703.
35.Afkhami, S., Tyler, A., Renardy, Y., et al.“Deformation of a hydrophobic ferrofluid dropletsuspended in a viscous medium under uniformmagnetic fields”, Journal of Fluid Mechanics, 663, pp. 358-384 (2010).https://doi.org/10.1017/S0022112010003551.
36.Majidi, M., Bijarchi, M.A., Arani, A.G., et al.“Magnetic field-induced control of a compoundferrofluid droplet deformation and breakup in shearflow using a hybrid lattice Boltzmann-finite difference method”, International Journal of Multiphase Flow,146, 103846 (2022).https://doi.org/10.1016/j.ijmultiphaseflow.2021.103846.
37.Bijarchi, M.A., Favakeh, A., and Shafii, M.B. “Theeffect of a non-uniform pulse-width modulatedmagnetic field with different angles on the swingingferrofluid droplet formation”, Journal of Industrialand Engineering Chemistry, 84, pp. 106-119 (2020).https://doi.org/10.1016/j.jiec.2019.12.026.
38.Favakeh, A., Bijarchi, M.A., and Shafii, M.B.“Ferrofluid droplet formation from a nozzle usingalternating magnetic field with different magnetic coilpositions”, Journal of Magnetism and MagneticMaterials, 498, p. 6 (2020).https://doi.org/10.1016/j.jmmm.2019.166134.
39.Bijarchi, M.A., Favakeh, A., Alborzi, S., et al.“Experimental investigation of on-demand ferrofluiddroplet generation in microfluidics using a Pulse-WidthModulation magnetic field with proposed correlation”,Sensors and Actuators B: Chemical, 329, p. 14 (2021).https://doi.org/10.1016/j.snb.2020.129274.
40.Bijarchi, M.A., Favakeh, A., Mohammadi, K., et al.“Ferrofluid droplet breakup process and neckevolution under steady and pulse-width modulatedmagnetic fields”, Journal of Molecular Liquids, 343,117536 (2021).https://doi.org/10.1016/j.molliq.2021.117536.
41.Bijarchi, M.A., Yaghoobi, M., Favakeh, A., et al. “On-demand ferrofluid droplet formation with non-linearmagnetic permeability in the presence of high non-uniform magnetic fields”, Scientific Reports, 12(1), p.10868 (2022).https://doi.org/10.1038/s41598-022-14624-w.
42.Bijarchi, M.A., Favakeh, A., Sedighi, E., et al.“Ferrofluid droplet manipulation using an adjustablealternating magnetic field”, Sensors and Actuators A:Physical, 301, p. 111753 (2020).
43.Youesfi, M., Sarkhosh, M.H., Bijarchi, M.A., et al.“Investigating the Response of Ferrofluid Droplets in aUniform Rotating Magnetic Field: Towards Splitting and Merging”, 2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1-5 (2023). https://doi.org/10.1109/MARSS58567.2023.10294170.
44.Azizian, P., Mohammadrashidi, M., Abbas Azimi, A.,et al. “Magnetically driven manipulation ofnonmagnetic liquid marbles: Billiards with liquidmarbles”, Micromachines, 14(1), p. 49 (2022).https://doi.org/10.3390/mi14010049.
45.Sarkhosh, M.H., Yousefi, M., Bijarchi, M.A., et al.“Manipulation of ferrofluid marbles and dropletsusing repulsive force in magnetic digitalmicrofluidics”, Sensors Actuators A: Physical, 363,114733 (2023).https://doi.org/10.1016/j.sna.2023.114733.
46.Zarei Saleh Abad, M., Ebrahimi‐Dehshali, M.,Bijarchi, M.A., et al. “Visualization of pool boilingheat transfer of magnetic nanofluid”, Heat Transfer-Asian Research, 48(7), pp. 2700-2713 (2019).https://doi.org/10.1002/htj.21498.
47.Wu, Y., Fu, T., Ma, Y., et al. “Active control offerrofluid droplet breakup dynamics in a microfluidicT-junction”, Microfluidics and Nanofluidics, 18(1),pp. 19-27 (2015).https://doi.org/10.1007/s10404-014-1414-y.
48.Aboutalebi, M., Shafii, M.B., and KazemzadehHannani, S. “Numerical study on the ferrofluid dropletsplitting in a T-junction with branches of unequalwidths using asymmetric magnetic field”, Journal ofApplied Computational Mechanics, 9(2), pp. 357-370(2023).https://doi.org/10.22055/JACM.2021.36722.2892.
49.Bijarchi, M.A., Dizani, M., Honarmand, M., et al.“Splitting dynamics of ferrofluid droplets inside amicrofluidic T-junction using a pulse-widthmodulated magnetic field in micro-magnetofluidics”,Soft Matter, 17(5), pp. 1317-1329 (2021).https://doi.org/10.1039/d0sm01764g.
50.Chen, C.-Y., Chen, C.-H., and Lee, W.-F.“Experiments on breakups of a magnetic fluid dropthrough a micro-orifice”, Journal of Magnetism andMagnetic Materials, 321(20), pp. 3520-3525 (2009).https://doi.org/10.1016/j.jmmm.2009.06.066.
51.Chang, C.-W., Cheng, Y.-T., Tsai, C.-Y., et al.“Periodic flow patterns of the magnetic fluid inmicrochannel”, Journal of Magnetism and MagneticMaterials, 310(2), pp. 2844-2846 (2007).https://doi.org/10.1016/j.jmmm.2006.11.064.
52.Basu, A.S. “Droplet morphometry and velocimetry(DMV): a video processing software for time-resolved, label-free tracking of droplet parameters”,Lab on a Chip, 13(10), pp. 1892-1901 (2013).https://doi.org/10.1039/c3lc50074h.
53.Bijarchi, M.A. and Shafii, M.B. “Experimentalinvestigation on the dynamics of on-demand ferrofluid drop formation under a pulse-width-modulated nonuniform magnetic field”, Langmuir, 36(26), pp. 7724-7740 (2020). https://doi.org/10.1021/acs.langmuir.0c00097.
54.Mohammadrashidi, M., Bijarchi, M.A., Shafii, M.B.,et al. “Experimental and theoretical investigation onthe dynamic response of ferrofluid liquid marbles tosteady and pulsating magnetic fields”, Langmuir,39(6), pp. 2246-2259 (2023).https://doi.org/10.1021/acs.langmuir.2c02811.
55.Mohammadrashidi, M., Azizian, P., Bijarchi, M.A., etal. “Vibration and jumping of ferrofluid marbles under an initial magnetic perturbation”, Langmuir, 39(27),pp. 9406-9417 (2023).https://doi.org/10.1021/acs.langmuir.3c00894.
Volume 32, Issue 2
Transactions on Mechanical Engineering
January and February 2025 Article ID:5113
  • Receive Date: 20 November 2020
  • Revise Date: 30 December 2023
  • Accept Date: 31 July 2024