Experimental and numerical analysis of novel 9-DOF robotic manipulator for computed tomography guided medical procedure

Document Type : Article

Authors

School of Mechanical Engineering, KIIT Deemed to be University, Bhubaneswar-751024, India.

Abstract

One of the most common procedures implemented in the diagnosis of cancer and tumour is percutaneous biopsy under computed tomography (CT) image guidance. A 9-DOF hybrid redundant fully actuated robotic manipulator with a novel arc and train design is developed here for the retrieval of suspected tissue for biopsy procedure under CT guidance. Mathematical model, forward, inverse kinematics and joint trajectory equations of the robotic manipulator is formulated using standard DH convention. Inverse kinematics of the novel arc and train structure for CT bed mountability is also derived in this research. 3D-CAD model of the robot is developed and compared with the CT machine and a human model in SolidWorks 2016. Theoretical simulation is performed using the derived equations in MATLAB. Target for the simulation and experimentation is obtained from CT image with the help of an expert radiologist in KIMS hospital, Bhubaneswar. Five experiments is performed using the target point to understand the repeatability of the robotic manipulator. Deviation analysis of the robot in reaching the target during experimentation is obtained and plotted using a dual camera setup and internal position sensors of the actuator. The experimental results were well within acceptable parameters under laboratory conditions.

Keywords

Main Subjects


References:
1. Shubham Kamlesh, S. and Mishra, R. "Advanced path simulation of a 5R robotic arm for CT guided medical procedures", Materials Today: Proceedings, 5(2), pp. 6149-6156 (2018). https://doi.org/10.1016/j.matpr.2017.12.221.
2. Shah, S., Mishra, R., and Choudhury, S. "Preliminary design of an 7 DOF robotic manipulator positioning biopsy needle", Materials Today: Proceedings, 5(9), pp. 19140-19146 (2018). https://doi.org/10.1016/j.matpr.2018.06.268.
3. Shah, S., Mishra, R., Mishra, B., et al. "Prediction of abnormal hepatic region using ROI thresholding-based segmentation and deep learning-based classification", International Journal of Computer Applications in Technology, 64(4), p. 382 (2020). https://doi.org/10.1504/IJCAT.2020.112685.
4. Shah, S., Mishra, R., Szczurowska, A., et al. "Noninvasive multi-channel deep learning convolutional neural networks for localization and classification of common hepatic lesions", Polish Journal of Radiology, 86, pp. e440-e448 (2021). https://doi.org/10.5114.
5. Shah, S. and Mishra, R. "Modelling and optimization of robotic manipulator mechanism for computed tomography guided medical procedure", Scientia Iranica, 29(2B), pp. 543-555 (2021). https://doi.org/10.24200/sci.2021.57259.5149.
6. Northern Digital Inc., 103 Randall Drive, Waterloo, Ontario, N2V 1C5, Canada. http://www.ndigital.com. https://doi.org/10.1118/1.1760186.
7. Claron Technology Inc., 120 Carlton Street, Suite 217, Toronto, Ontario, M5A 4K2, Canada. http://www.clarontech.com.
8. Gavaghan, K.A., Anderegg, S., Peterhans, M., et al. "Augmented reality image overlay projection for image guided open liver ablation of metastatic liver cancer", In Augmented Environments for Computer-Assisted Interventions, volume 7264 of Lecture Notes in Computer Science, pp. 36-46 (2012). https://doi.org/10.1007/978-3-642-32630-1 4.
9. Pathfinder, 2969 Armory Drive, Suite 100A, Nashville, Tennessee, 37204, USA. http://www.pathnav.com.
10. Medtronic, 710 Medtronic Parkway, Minneapolis, Minnesota, 55432-5604, USA. http://www.medtronic.com.
11. Stryker, 2825 Airview Boulevard, Kalamazoo, Michigan, 49002, USA.http://www.stryker.com.
12. CAScination AG, Stauffacherstrasse 78, 3008 Bern, Switserland.http://www.cascination.com.
13. ActiViews, Inc., 591 North Avenue, Entry One, Wake-field, Massachusetts,01880, USA. http://www.activiews.com.
14. Gilboa, P., inventor; Activiews Ltd., assignee, "System and method for optical position measurement and guidance of a rigid or semi- flexible tool to a target", US patent 7,876,942 B2, January 25 (2011). https://patents.google.com/patent/US7876942B2/en.
15. Barrett, S.R.H. Hanumara, N.C., Walsh, C.J., et al. "A remote needle guidance system for percutaneous biopsies", In Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), 7, pp. 481-189, Long Beach, California, USA (2005). https://doi.org/10.1115/DETC2005-85387.
16. Royal Philips, Amstelplein 2, Breitner Center, 1096 BC, Amsterdam, theNetherlands. http://www.philips.com.
17. Yanof, J.H., Goldstein, L.L., Jensen, F.C., et al., Inventors; Picker International Inc., assignee. Interchangeable guidance devices for C.T. assisted surgery and method of using same. US patent 5,957,933, September 28, (1999). https://patents.google.com/patent/US5957933A/en.
18. Yanof, J.H., Klahr, P.H., and O'Donnell, L., Inventors; Picker InternationalInc., assignee. Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures. US patent6,064,904, May 16 (2000). https://patents.google.com/patent/US6064904A/en.
19. Hevezi, J.M., Blough, M., Hoffmeyer, D., et al. "Brachytherapy using CT Pin Point", Medicamundi, 46(3), pp. 22-27 (2002). https://inis.iaea.org/search/search.aspx?orig q= RN:36061418.
20. Immersion Corporation, 30 Rio Robles, San Jose, California, 95134, USA.http://www.immersion.com.
21. NeoRad AS, Gaustadalleen 21, 0349, Oslo, Norway.  http://www.neorad.no.
22. Brabrand, K., Berard-Andersen, N., Olsen, G.F., et al. inventors; Neo Rad A/S, applicant. Needle holder. US patent application 2012/0022368A1, January 26 (2012).
23. AprioMed AB, Virdings Alle 28, 754 50, Uppsala, Sweden. http://www.apriomed.com. 
24. Magnusson, A., Radecka, E., Lonnemark, M., et al. "Computed-tomography-guided punctures using a new guidance device", ActaRadiologica, 46(5), pp. 505-509 (2005). https://doi.org/10.1080/02841850510021508.
25. Gupta, R., Barrett, S.R.H., Hanumara, N.C., et al. inventors. "Guidance and insertion system", US patent application 2006/0229641 A1, October 12 (2006). https://patents.google.com/patent/US20060229641A1/en.
26. Bard International, Inc., 730 Central Avenue, Murray Hill, New Jersey,07974, USA. http://www.crbard.com.
27. Magnusson, A. and Akerfeldt, D. inventors; Bard International, Inc., assignee. "Puncture guide for computer tomography", US patent 5,280,427, January 18 (1994). https://patents.google.com/patent/US5280427A/en.
28. Magnusson, A. and Akerfeldt, D. "CT-guided core biopsy using a new guidance device", ActaRadiologica, 32(1), pp. 83-85 (1991). https://doi.org/10.1177/028418519103200122.
29. Stoianovici, D., Mazilu, D., and Kavoussi, L.R., inventors; The Johns HopkinsUniversity, assignee. "Robot for computed tomography interventions", US patent 7,822,466 B2, October 26 (2010). https://patents.google.com/patent/US7822466B2/en#citedBy.
30. Stoianovici, D., Cleary, K., Patriciu, A., et al. "AcuBot: A robot for radiological interventions", IEEE Transactions on Robotics and Automation, 19(5), pp. 927-930 (2003). DOI: 10.1109/TRA.2003.817072.
31. Arnolli, M., Buijze, M., Franken, M., et al. "System for CT-guided needle placement in the thorax and abdomen: A design for clinical acceptability, applicability and usability", The International Journal of Medical Robotics and Computer Assisted Surgery, 14(1), p. e1877 (2017). https://doi.org/10.1002/rcs.1877.
32. Kumari, K.S., Samal, S., Mishra, R., et al. "Diagnosing COVID-19 from CT image of lung segmentation & classification with deep learning based on convolutional neural networks", Wireless Personal Communications, 127, pp. 2483-2499 (2022). DOI: 10.1007/s11277-021-09076-w.
33. Shah, S., Mishra, R., Pramanik, S., et al. "Design and deviation analysis of a semi-automated needle manipulation system using image processing technique", Advances in Intelligent Systems and Computing, Springer, Singapore, 1045, pp. 279-288 (2020). https://doi.org/10.1007/978-981-15-0029-9 22.
34. Fahim, S., Sarker, Y., and Sarker, S. "Modeling and development of a five DOF vision based remote operated robotic arm with transmission control protocol", SN Applied Sciences, 2(7) (2020). https://doi.org/10.1007/s42452-020-3039-y.
35. Korayem, M. and Yousefzadeh, M. "Adaptive control of a cable-actuated parallel manipulator mounted on a platform with differential wheels under payload uncertainty", Scientia Iranica, 27(1), pp. 273-286 (2020). DOI:10.24200/SCI.2018.5100.1095.
36. Wu, J., Wang, X., Zhang, B., et al. "Multi-objective optimal design of a novel 6-DOF spray-painting robot", Robotica, 39(12), pp. 2268-2282 (2021). DOI: https://doi.org/10.1017/S026357472100031X.
37. Wu, J., Zhang, B., Wang, L., et al. "An iterative learning method for realizing accurate dynamic feedforward control of an industrial hybrid robot", Sci. China Technol. Sci., 64, pp. 1177-1188 (2021). DOI: https://doi.org/10.1007/s11431-020-1738-5.
38. Wu, J., Wang, J., and You, Z. "An overview of dynamic parameter identification of robots", Robotics and Computer-Integrated Manufacturing, 26(5), pp. 414-419 (2010). https://doi.org/10.1016/j.rcim.2010.03.013.
39. Gruber-Rouh, T., Lee, C., Bolck, J., et al. "Intervention planning using a laser navigation system for CT-guided interventions: A phantom and patient study", Korean Journal of Radiology, 16(4), pp. 729- 735 (2015). DOI: 10.3348/kjr.2015.16.4.729.
40. Koethe, Y., Xu, S., Velusamy, G., et al. "Accuracy and ecacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance a phantom study", European Radiology, 24(3), pp. 723-730 (2014). DOI: 10.1007/s00330-013-3056-y.
41. Arnolli, M., Buijze, M., Franken, M., et al. "System for CT-guided needle placement in the thorax and abdomen: A design for clinical acceptability, applicability and usability", The International Journal of Medical Robotics and Computer Assisted Surgery, 14(1), p. e1877 (2017). p.e1877. doi.org/10.1002/rcs.1877.