COVID-19 diagnosis: ULGFBP-ResNet51 approach on the CT and the chest X-ray images classiffcation

Document Type : Article

Authors

1 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

2 Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

The contagious and pandemic COVID-19 disease is currently considered as the main health concern and posed widespread panic across human-beings. It affects the human respiratory tract and lungs intensely. So that it has imposed significant threats for premature death. Although, its early diagnosis can play a vital role in revival phase, the radiography tests with the manual intervention are a time-consuming process. Time is also limited for such manual inspecting of numerous patients in the hospitals. Thus, the necessity of automatic diagnosis on the chest X-ray or the CT images with a high efficient performance is urgent. Toward this end, we propose a novel method, named as the ULGFBP-ResNet51 to tackle with the COVID-19 diagnosis in the images. In fact, this method includes Uniform Local Binary Pattern (ULBP), Gabor Filter (GF), and ResNet51. According to our results, this method could offer superior performance in comparison with the other methods, and attain maximum accuracy.

Keywords

Main Subjects


References:
1. Rajpal, S., Lakhyani, N., Singh, A.K., et al. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images", Chaos, Solitons and Fractals, 145, p. 110749 (2021). DOI: 10.1016/j.chaos.2021.110749.
2. Das, T.K., Chowdhary, C.L., and Gao, X. "Chest X-ray investigation: A convolutional neural network approach", In Journal of Biomimetics, Biomaterials and Biomedical Engineering, 45, pp. 57-70: Trans Tech Publ (2020). DOI: 10.4028/www.scientific.net/JBBBE.45.57.
3. Ahsan, M., Based, M., Haider, J., et al. "COVID-19 detection from chest X-ray images using feature fusion and deep learning", Sensors, 21(4), p. 1480 (2021). DOI: 10.3390/s21041480.
4. Alabool, H., Alarabiat, D., Abualigah, L., et al. "Artificial intelligence techniques for containment COVID- 19 pandemic: A systematic review", Research Square (2020). DOI: 10.21203/rs.3.rs-30432/v1.
5. Junior, J.R., Cardenas, D.A., Moreno, R.A., et al. "Novel chest radiographic biomarkers for COVID-19 using radiomic features associated with diagnostics and outcomes", Journal of Digital Imaging, 34(3), pp. 297- 307 (2021). DOI: 10.1007/s10278-021-00421-w.
6. Sabri, N., Hamzah, R., Ibrahim, S., et al. "COVID- 19 detection for chest X-ray images using local binary pattern", International Journal of Emerging Trends in Engineering Research, 8(1), pp. 78-81 (2020). DOI: 10.30534/ijeter/2020/1281.12020.
7. Yasar, H. and Ceylan, M. "A novel comparative study for detection of COVID-19 on CT lung images using texture analysis, machine learning, and deep learning methods", Multimedia Tools and Applications, 80(4), pp. 5423-5447 (2021). DOI: 10.1007/s11042-020-09894- 3.
8. Yasar, H. and Ceylan, M. "A new deep learning pipeline to detect COVID-19 on chest X-ray images using local binary pattern, dual tree complex wavelet transform and convolutional neural networks", Applied Intelligence, 51(5), pp. 2740-2763 (2021). DOI: 10.1007/s10489-020-02019-1.
9. Fang, Y., Zhang, H., Xie, J., et al. "Sensitivity of chest CT for COVID-19: Comparison to RT-PCR", Radiology, 296(2), pp. E115-E117 (2020). DOI: 10.1148/radiol.2020200432.
10. Wang, L., Lin, Z.Q., and Wong, A. "Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images", Scientific Reports, 10(1), pp. 1-12 (2020). DOI: 10.1038/s41598-020-76550-z.
11. Kassem, M.N. and Masallat D.T. "Clinical application of chest Computed Tomography (CT) in detection and characterization of coronavirus (COVID-19) pneumonia in adults", Journal of Digital Imaging, 34, pp. 273- 283 (2021). DOI: 10.1007/s10278-021-00426-5.
12. Maheshwari, S., Sharma, R.R., and Kumar, M. "LBP-based information assisted intelligent system for COVID-19 identification", Computers in Biology and Medicine, 134, p. 104453 (2021). DOI: 10.1016/j.compbiomed.2021.104453.
13. Lujan-Garcia, J.E., Moreno-Ibarra, M.A., Villuendas- Rey, Y., et al. "Fast COVID-19 and pneumonia classification using chest X-ray images", Mathematics, 8(9), p. 1423 (2020). DOI: 10.3390/math8091423.
14. Hammoudi, K., Benhabiles, H., Melkemi, M., et al. "Deep learning on chest X-ray images to detect and evaluate pneumonia cases at the era of COVID-19", Journal of Medical Systems, 45(7), pp. 1-10 (2021). DOI: 10.1007/s10916-021-01745-4.
15. Albahri, O.S., Zaidan, A.A., Albahri, A.S., et al. "Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects", Journal of infection and public health, 13(10), pp. 1381-1396 (2020). DOI: 10.1016/j.jiph.2020.06.028.
16. Esmaeili, V. and Shahdi, S.O. "Automatic microexpression apex spotting using Cubic-LBP", Multimedia Tools and Applications, 79(27), pp. 20221-20239 (2020). DOI: 10.1007/s11042-020-08737-5.
17. Ozturk, S., Ozkaya, U., and Barstugan, M. "Classification of coronavirus (COVID-19) from X-ray and CT images using shrunken features", International Journal of Imaging Systems and Technology, 31(1), pp. 5-15 (2020). DOI: 10.1002/ima.22469.
18. Al-Karawi, D., Al-Zaidi, S., Polus, N., et al. "Ai based chest X-Ray (CXR) scan texture analysis algorithm for digital test of COVID-19 patients", medRxiv (2020). DOI: 10.1101/2020.05.05.20091561.
19. Shi, F., Xia, L., and Shan, F. "Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification", Physics in Medicine and Biology, 66(6), p. 065031 (2021). DOI: 10.1088/1361-6560/abe838.
20. Shahdi, S.O. and Abu-Bakar S. "Frequency domain feature-based face recognition technique for different poses and low-resolution conditions", In 2011 IEEE International Conference on Imaging Systems and Techniques, pp. 322-326: IEEE (2011). DOI:10.1109/IST.2011.5962222.
21. Esmaeili, V., Feghhi, M.M., and Shahdi, S.O. "Microexpression recognition using histogram of image gradient orientation on diagonal planes", In 2021 5th International Conference on Pattern Recognition and Image Analysis (IPRIA), pp. 1-5 IEEE (2021). DOI: 10.1109/IPRIA53572.2021.9483500.
22. Shahdi, S.O. and Abu-Bakar, S.A. "Variant pose face recognition using discrete wavelet transform and linear regression", International Journal of Pattern Recognition and Artificial Intelligence, 26(06), 1256013 (2012). DOI: 10.1142/S0218001412560137.
23. Shahdi, S.O. and Abu-Bakar, S.A. "Varying pose face recognition using combination of discrete cosine and wavelet transforms", In 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), 2, pp. 642-647 IEEE (2012). DOI: 10.1109/ICIAS.2012.6306093.
24. Irmak, E. "COVID-19 disease severity assessment using CNN model", IET Image Processing, 15(8), pp. 1814-1824 (2021). DOI: 10.1049/ipr2.12153.
25. Farooq, M. and Hafeez, A. "COVID-resnet: A deep learning framework for screening of COVID-19 from radiographs", arXiv preprint arXiv:2003.14395 (2020). DOI: 10.48550/arXiv.2003.14395.
26. Narin, A., Kaya, C., and Pamuk, Z. "Automatic detection of coronavirus disease (COVID-19) using Xray images and deep convolutional neural networks", Pattern Analysis and Applications, 24(3), pp. 1207- 1220 (2021). DOI: 10.1007/s10044-021-00984-y.
27. Li, J., Zhao, G., Tao, Y., et al. "Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19", Pattern Recognition, 114, 107848 (2021). DOI: 10.1016/j.patcog.2021.107848.
28. Ni, Q., Sun, Z.Y., Qi, L., et al. "A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images", European Radiology, 30(12), pp. 6517-6527 (2020). DOI: 10.1007/s00330-020-07044-9.
29. Hu, C., Jiang, D., Zou, H., et al. "Multi-task microexpression recognition combining deep and handcrafted features", In 2018 24th International Conference on Pattern Recognition (ICPR), pp. 946-951 IEEE (2018). DOI: 10.1109/ICPR.2018.8545555.
30. Horry, M.J., Chakraborty, S., Pradhan, B., et al. "Systematic investigation into generalization of COVID-19 CT deep learning models with Gabor ensemble for lung involvement scoring", European Radiology, 30(12), pp. 6517-6527 (2021). DOI: 10.48550/arXiv.2105.15094.
31. Krishna, B.V., Bodavarapu, P.N.R., Santhosh, P., et al. "Chest computed tomography scan images for classification of coronavirus by enhanced convolutional neural network and Gabor filter", In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 825-831 IEEE (2021). DOI: 10.1109/ICICCS51141.2021.9432345.
32. Ojala, T., Pietikainen, M., and Harwood, D. "A comparative study of texture measures with classification based on featured distributions", Pattern Recognition, 29(1), pp. 51-59 (1996). DOI: 10.1016/0031- 3203(95)00067-4.
33. Dalal, N. and Triggs, B. "Histograms of oriented gradients for human detection", In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 1, pp. 886-893: IEEE (2005). DOI: 10.1109/CVPR.2005.177.
34. Gabor, D. "Theory of communication. part 1: The analysis of information", Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26), pp. 429-441 (1946). DOI: 10.1049/ji-3-2.1946.0074.
35. LeCun, Y., Bottou, L., Bengio, Y., et al. "Gradientbased learning applied to document recognition", Proceedings of the IEEE, 86(11), pp. 2278-2324 (1998). DOI: 10.1109/5.726791.
36. Esmaeili, V., Mohassel Feghhi, M., and Shahdi, S.O. "Automatic micro-expression apex frame spotting using local binary pattern from six intersection planes", arXiv preprint arXiv: 2104.02149 (2021). DOI: 10.48550/arXiv.2104.02149.
37. Esmaeili, V., Mohassel Feghhi, M., and Shahdi, S.O. "Autonomous apex detection and micro-expression recognition using proposed diagonal planes", International Journal of Nonlinear Analysis and Applications, 11, pp. 483-497 (2020). DOI: 10.22075/ijnaa. 2020.4707.
38. Shahdi, S.O. and Abu-Bakar, S.A.R. "Neural networkbased approach for face recognition across varying pose", International Journal of Pattern Recognition and Artificial Intelligence, 29(08), 1556015 (2015). DOI: 10.1142/S0218001415560157.
39. Mousavi, S.M., Shahdi, S.O., and Abu-Bakar, S.A.R. "Crowd estimation using histogram model classification based on improved uniform local binary pattern", International Journal of Computer and Electrical Engineering, 4(3), p. 256 (2012). DOI: 10.7763/IJCEE.2012.V4.490.
40. Shankar, K. and Perumal, E. "A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images", Complex and Intelligent Systems, 7(3), pp. 1277-1293 (2021). DOI: 10.1007/s40747-020- 00216-6.
41. Esmaeili, V., Mohassel Feghhi, M., and Shahdi, S.O. "A comprehensive survey on facial micro-expression: approaches and databases", Multimedia Tools and Applications, 81(28), pp. 40089-40134 (2022). DOI: 10.1007/s11042-022-13133-2.
42. Esmaeili, V. and Mohassel Feghhi, M. "Diagnosis of COVID-19 disease by combining hand-crafted and deep-learning methods on ultrasound data", Journal of Machine Vision and Image Processing, 9(4), pp. 31-41 (2022). DOI: 20.1001.1.23831197.1401.9.4.3.0.
43. Esmaeili, V., Feghhi, M.M., and Shahdi, S.O. "Early COVID-19 diagnosis from lung ultrasound images combining RIULBP-TP and 3D-DenseNet", In 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pp. 1-5: IEEE (2022). DOI: 10.1109/CFIS54774.2022.9756430.
44. Esmaeili, V., Mohassel Feghhi, M., and Shahdi, S.O. "Micro-expression recognition based on the multi-color ULBP and histogram of gradient direction from six intersection planes", Journal of Iranian Association of Electrical and Electronics Engineers, 19(3), pp. 123- 130 (2022). DOI: 10.52547/jiaeee.19.3.123.
45. Thepade, S.D., Jadhav, K., Sange, S., et al. "COVID- 19 identification from chest X-ray using local binary patterns and multilayer perceptrons", Journal of Critical Reviews, 7(19), pp. 4277-4285 (2020). DOI: 10.31838/jcr.07.19.502.
46. Majumdar, J., Ankalaki, S., Karthik, G., et al. "Texture feature for analysis of COVID-19 X-ray images", Journal of Critical Reviews, 7(15), pp. 3194-3204 (2020). DOI: 10.31838/jcr.07.15.437.
47. Li, M., Li, X., Jiang, Y., et al. "Explainable multi-instance and multi-task learning for COVID- 19 diagnosis and lesion segmentation in CT images", Knowledge-Based Systems, 252, p. 109278 (2022). DOI: 10.1016/j.knosys.2022.109278.
48. Yasar, H. and Ceylan, M. "A new radiomic study on lung CT images of patients with COVID-19 using LBP and deep learning (Convolutional Neural Networks (CNN))", Research Square (2020). DOI: 10.21203/rs.3.rs-30427/v1.
49. Apostolopoulos, I.D. and Mpesiana, T.A. "COVID- 19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks", Physical and Engineering Sciences in Medicine, 43(2), pp. 635-640 (2020). DOI: 10.1007/s13246-020-00865-4.
50. Simonyan, K. and Zisserman, A. "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556 (2014). DOI: 10.48550/arXiv.1409.1556.
51. Vaid, S., Kalantar, R., and Bhandari, M. "Deep learning COVID-19 detection bias: Accuracy through artificial intelligence", International Orthopaedics, 44(8), pp. 1539-1542 (2020). DOI: 10.1007/s00264- 020-04609-7.
52. He, K., Zhang, X., Ren, S., et al. "Deep residual learning for image recognition", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778 (2016). DOI: 10.1109/CVPR.2016.90.
53. Xu, X., Jiang, X., Ma, C., et al., "A deep learning system to screen novel coronavirus disease 2019 pneumonia", Engineering, 6(10), pp. 1122-1129 (2020). DOI: 10.1016/j.eng.2020.04.010.
54. Song, Y., Zheng, S., Li, L., et al. "Deep learning enables accurate diagnosis of novel coronavirus (COVID- 19) with CT images", IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(6), pp. 2775-2780 (2021). DOI: 10.1109/TCBB.2021.3065361.
55. Gozes, O., Frid-Adar, M., Greenspan, H., et al. "Rapid AI development cycle for the coronavirus (COVID- 19) pandemic: Initial results for automated detection and patient monitoring using deep learning CT image analysis", ArXiv Preprint ArXiv: 2003.05037 (2020). DOI: 10.48550/arXiv.2003.05037.
56. Sethy, P.K. and Behera, S.K. "Detection of coronavirus disease (COVID-19) based on deep features", Preprints, (2020). DOI: 10.20944/preprints202003.0300.v1.
57. Jin, S., Wang, B., Xu, H., et al. "AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks", MedRxiv (2020). DOI: 10.1101/2020.03.19.20039354.
58. Chowdhury, M.E., Rahman, T., Khandakar, A., et al. "Can AI help in screening viral and COVID-19 pneumonia?", IEEE Access, 8, pp. 132665-132676(2020). DOI: 10.1109/ACCESS.2020.3010287.
59. Ezzat, D. and Ella, H.A. "GSA-DenseNet121-COVID- 19: A hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm", ArXiv Preprint ArXiv: 2004.05084 (2020). DOI: 10.48550/arXiv.2004.05084.
60. Chatterjee, S., Saad, F., Sarasaen, C., et al. "Exploration of interpretability techniques for deep COVID- 19 classification using chest X-ray images", Journal of Imaging, 10(2), p. 45 (2024). DOI: 10.3390/jimaging10020045.
61. Wu, X., Hui, H., Niu, M., et al. "Deep learningbased multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study", European Journal of Radiology, 128, p. 109041 (2020). DOI: 10.1016/j.ejrad.2020.109041.
62. Waheed, A., Goyal, M., Gupta, D., et al. "Covidgan: data augmentation using auxiliary classifier gan for improved COVID-19 detection", IEEE Access, 8, pp. 91916-91923 (2020). DOI: 10.1109/ACCESS. 2020.2994762.
63. Elpeltagy, M. and Sallam, H. "Automatic prediction of COVID-19 from chest images using modified ResNet50", Multimedia Tools and Applications, 80(17), pp. 26451-26463 (2021). DOI: 10.1007/s11042- 021-10783-6.
64. Bolhassani, M. "Transfer learning approach to classify the X-ray image that corresponds to corona disease using ResNet50 pretrained by ChexNet", arXiv preprint arXiv:2105.08382 (2021). DOI: 10.48550/arXiv.2105.08382.
65. Walvekar, S. and Shinde, D. "Detection of COVID-19 from CT images using ResNet50", In 2nd International Conference on Communication and Information Processing (ICCIP) (2020). http://dx.doi.org/10.2139/ssrn.3648863.
66. Hemdan, E.E.-D., Shouman, M.A., and Karar, M.E. "Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images", arXiv preprint arXiv:2003.11055 (2020). DOI: 10.48550/arXiv.2003.11055.
67. Sethy, P. and Behera, S. "Detection of corona virus disease (COVID-19) based on deep features", Preprints: 2020030300 (2020). 
68. Wang, S., Kang, B., Ma, J., et al. "A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)", European Radiology, 31, pp. 6096-6104 (2021). DOI: 10.1007/s00330-021-07715-1.
69. Szegedy, C., Liu, W., Jia, Y., et al. "Going deeper with convolutions", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9 (2015). DOI: 10.1109/CVPR.2015.7298594.
70. Kassani, S.H., Kassasni, P.H., Wesolowski, M.J., et al. "Automatic detection of coronavirus disease (COVID- 19) in X-ray and CT images: A machine learning-based approach", arXiv preprint arXiv:2004.10641 (2020). DOI: 10.1016/j.bbe.2021.05.013.
71. Howard, A.G., Zhu, M., Chen, B., et al. "Mobilenets: Ecient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861 (2017). DOI: 10.48550/arXiv.1704.04861.
72. Togacar, M., Ergen, B., and Comert, Z., "COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches", Computers in Biology and Medicine, 121, p. 103805 (2020). DOI: 10.1016/j.compbiomed.2020.103805.
73. Krizhevsky, A., Sutskever, I., and Hinton, G.E. "Imagenet classification with deep convolutional neural networks", Communications of the ACM, 60(6), pp. 84-90 (2017). DOI: 10.1145/3065386.
74. Maghdid, H.S., Asaad, A.T., Ghafoor, K.Z., et al. "Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms", In Multimodal Image Exploitation and Learning 2021, 11734, p. 117340E: International Society for Optics and Photonics (2021). DOI: 10.1117/12.2588672.
75. Olshausen, B.A. and Field, D.J. "Emergence of simplecell receptive field properties by learning a sparse code for natural images", Nature, 381(6583), pp. 607-609 (1996). DOI: 10.1038/381607a0.
76. Imani, M. "Automatic diagnosis of coronavirus (COVID-19) using shape and texture characteristics extracted from X-ray and CT-scan images", Biomedical Signal Processing and Control, 68, p. 102602 (2021). DOI: 10.1016/j.bspc.2021.102602.
77. Adekunle, Y.A., Aiyeniko, O., Eze, M.o., et al. "Feature extraction techniques for iris recognition system: A survey", International Journal of Innovative Research in Computer Science and Technology (IJIRCST), 8(2), pp. 2347-5552 (2020). DOI: 10.21276/ijircst.2020.8.2.5.
78. Al-Karawi, D., Al-Zaidi, S., Polus, N., et al. "Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients", MedRxiv (2020). DOI: 10.1101/2020.04.13.20063479.
79. Wu, Z., Shen, C., and Van Den Hengel, A. "Wider or deeper: Revisiting the resnet model for visual recognition", Pattern Recognition, 90, pp. 119-133 (2019). DOI: 10.1016/j.patcog.2019.01.006.
80. El-Shafai W. and Abd El-Samie, F. "Extensive COVID-19 X-ray and CT chest images dataset", Mendeley Data, V3 (2020). DOI: 10.17632/8h65ywd2jr.3.
81. Cohen, J.P., Morrison, P., Dao, L., et al. "COVID-19 image data collection: Prospective predictions are the future", arXiv preprint arXiv:2006.11988 (2020). DOI:10.48550/arXiv.2006.11988.
82. Kermany, D.S., Goldbaum, M., Cai, W., et al. "Identifying medical diagnoses and treatable diseases by image-based deep learning", Cell, 172(5), pp. 1122- 1131. e9 (2018). DOI: /10.1016/j.cell.2018.02.010.
83. Abbas, A., Abdelsamea, M.M., and Gaber, M.M. "Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network", Appl. Intell., 51, pp. 854-864 (2021). DOI: 10.1007/s10489- 020-01829-7.
84. Soares, E., Angelov, P., Biaso, S., et al. "A large multiclass dataset of CT scans for COVID-19 identification", Evolving Systems, 15(2), pp. 1-6 (2023). DOI: 10.1007/s12530-023-09511-2.
85. Nicholson, C. "Evaluation metrics for machine learning-accuracy, precision, recall, and F1 defined", ed: Pathmind. http://pathmind.com/wiki/accuracyprecision -recall-f1 (2019).
Volume 31, Issue 14
Transactions on Computer Science & Engineering and Electrical Engineering (D)
July and August 2024
Pages 1091-1104
  • Receive Date: 07 July 2022
  • Revise Date: 03 January 2024
  • Accept Date: 12 May 2024