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Abstract. The contagious and pandemic COVID-19 disease is currently considered as
the main health concern and posed widespread panic across human-beings. It a�ects the
human respiratory tract and lungs intensely. So that it has imposed signi�cant threats
for premature death. Although, its early diagnosis can play a vital role in revival phase,
the radiography tests with the manual intervention are a time-consuming process. Time is
also limited for such manual inspecting of numerous patients in the hospitals. Thus, the
necessity of automatic diagnosis on the chest X-ray or the Computed Tomography (CT)
images with a high e�cient performance is urgent. Toward this end, we propose a novel
method, named as the ULGFBP-ResNet51 to tackle with the COVID-19 diagnosis in the
images. In fact, this method includes Uniform Local Binary Pattern (ULBP), Gabor Filter
(GF), and 51-layer Residual Neural Networks (ResNet51). According to our results, this
method could o�er superior performance in comparison with the other methods, and attain
maximum accuracy.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Since early months of 2020, coronavirus disease
(COVID-19), which is considerably contagious has
permeated through the globe [1,2]. It has imposed
signi�cant and unprecedented su�erings and threats for
premature death [2]. Unequivocally, it is now regarded
as the most deadly and dangerous disease that makes
severe panic to the crowd [3]. The well-known reason
for death of this pandemic is obstacles in oxygen intake
due to inammation lung, �lled air sacs with discharge
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and uid [3]. Early identi�cation of the COVID can not
only reduce death rate sharply, but also most prone to
faster recovery phase [1].

For the �rst time in the December of 2019, the
sick persons infected with COVID-19 were identi�ed
in Wuhan, China [4]. Often, the patients develop a
dry cough, fever, shortness of breath, weariness, sore
throat, pains, runny nose, body aches, and diarrhoea
symptoms. High fever and dry cough are its core
symptoms [3]. Its symptoms are similar to pneumonia
and inuenza-A that a�ect the human respiratory tract
and lungs [1,5]. Since the separation of infection
between COVID-19 and bacterial pneumonia is not an
easy task, the automatic feature extraction from images
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can help to diagnose the disease [6]. The di�erence is
that lung lesions in COVID-19 patients are higher than
pneumonia and inuenza diseases [7]. In fact, COVID-
19 damages the lungs intensely. The virus causes the
demise of most persons who have chronic diseases (for
instance, diabetes) [8].

The viability of this virus in the air is expected to
be for almost three hours [3]. It can travel through
the patient's cough or sneeze droplets from person
to person in close contact. It can even contaminate
humans with eating food in infected copper, plastic,
and stainless steel dishes. It should be mentioned out
the COVID-19 can be live in aforementioned utensils
for several hours [3].

Several diagnostic tasks such as viral throat swab
testing, blood, and serologic tests are conducted for
this disease. Also, Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR) is a yardstick from Na-
sopharyngeal Swabs (NS) and Or-pharyngeal Swabs
(OS) samples. Nevertheless, these recognition mea-
sures do not only require manual intervention but
also are time-consuming processes [2,9]. Therefore,
using the X-ray or Computed Tomography (CT) data
is more preferable [10,11]. These scanning images
conspicuously indicate COVID-19 viral infections with
higher con�dence. Although, these medical imaging
modalities are available and inexpensive, they are not
rich in resolution. X-ray image is obtained much faster
than its CT counterpart. Meanwhile, CT provides large
data appropriate for deep learning methods [12{14].

Due to the lack of certainty in clinical methods,
it is necessary for disease diagnosis to accompany with
computer-aided high-end accuracy [15]. In health care
system the time is always precious since it is limited for

numerous patients in hospitals; hence manual diagnosis
procedure could be painstaking. To save as many
lives, image processing and understanding techniques
could play a main role at recognition task at hand.
Nonetheless, it should be performed quickly and highly
e�ciently to be fully fruitful and as a result avoid
human errors.

To this end, computer vision, machine learning,
and deep learning approaches are put into trial for
the e�cient diagnosis of radiology images. In this
paper, we categorize them into hand-engineered, deep-
learning, and mixture methods. The hand-engineered
approach extracts features using some prede�ned pat-
terns in images. It includes Gabor Filter (GF),
Local Binary Pattern (LBP), Histograms of Oriented
Gradients (HOG), and etc. [6,16{23].

Deep-learning approach (e.g., Convolutional Neu-
ral Network (CNN)) learns from features extracted
from raw images [24{28]. The advantages and disad-
vantages of some available hand-engineered and deep-
learning methods for COVID-19 identi�cation are pre-
sented in Table 1. The mixture method makes use
of both hand-engineered and deep-learning methods
[3,8,29{31]. In fact, it combines them in the favor of
reaching more bene�ts.

In the manuscript, we adopt a novel mixture
approach named ULGFBP-ResNet51 in order to
identify COVID-19 on medical images. In fact, this
method includes Uniform Local Binary Pattern (LBP)
(ULBP), GF, and ResNet51. According to each of
these comprising method characteristics, this method
will outperform in various aspects. The design diagram
of our proposed method is illustrated in Figure 1. The
main contributions of this paper are as follows:

Figure 1. The design diagram of the ULGFBP-ResNet51 for COVID-19 diagnosis on lung and chest images.

Table 1. The pros and cons of some used methods for COVID-19 identi�cation from images.
Method Advantage Disadvantage

LBP [32]

{ Computational simplicity

{ Good performance for grayscale texture

{ Creating long histograms
{ Sensitive to noise, rotation, and illumination
{ Capturing limited structural information
{ Increasing the feature size with the neighbours number

HOG [33] Invariance to photometric and geometric changes Complex computations

GF [34] Robust to features in multi-scale and direction Complexity in parameter setting

CNN [35] Learning features by removing unimportant parameters { Need to large raw images
{ High computational complexity
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Table 2. The pros and cons of di�erent CNN architectures.
Architecture

name
Advantages Disadvantages

AlexNet [73] - Reduction of the images classi�cation error rate to half
- Low loss of features

- The less depth in comparison to other architectures
- Requiring more time to achieve high accuracy

VGG [50] Re�ning the performance by gaining depth
- The vanish/detonate gradients by more increasing of
the network depth
- Slow processing than the ResNet

GoogLeNet [69]
-Increasing the network's width and depth
- Quicker training than VGG
- Reducing the parameters

- High calculation complexity
- Modifying the number of channels di�culty

MobileNet [71]

- Less number of parameters and weights than GoogleNet
- Decreasing the number of network calculations
- A lightweight deep CNN
- Reducing size of network
- Low-latency

Reduction of the accuracy slightly

ResNet [52]

- Solving the degradation problem
- Solving the vanishing gradient problem
- Reducing the training time
- Requiring a feature learning only once

Increasing architecture complexity

� Proposing a novel mixture method named
ULGFBP-ResNet51 for COVID-19 diagnosis;

� Using the ULGFBP map as the network input
rather than original data. Unlike LBP, ULBP is
not sensitive to some conditions such as rotation
and illumination. GF is also robust to features in
multi-scale and direction. Therefore, the outcome
map using these methods tends to have better
performance on classi�cation;

� Achieving high accurate results for COVID-19 iden-
ti�cation in comparison with other related works.

The remaining parts of the manuscript are formed as
follows.

Related literature is expressed in Section 2. In Sec-
tion 3, the proposed ULGFBP-ResNet51 method is
presented in details. Afterwards, discussion on the
experiments and the paper conclusion are explicated
in Sections 4 and Section 5, respectively.

2. Related work

LBP is one of the most e�cient texture descriptors
which has been exerted in many feature extraction and
processing tasks [16,36{44]. In [6], they apply the same
feature extraction method on X-ray images for COVID-
19 identi�cation. Then, the normal, COVID-19, and
bacteria pneumonia chest images have been classi�ed
using k-Nearest Neighbour (k-NN). After 10-fold cross-
validation, 96% accuracy had been achieved.

In [45], a set of LBP features were utilized using
multilayer perceptron for classi�cation. The optimal
performance was achieved by multilayer perceptron
with seventy hidden layers and radius equal to six in
LBP for COVID-19 identi�cation from X-ray images.
Accuracy was 73.34%. Also, LBP and other texture-
based methods such as HOG were employed for analysis

of COVID-19 and annotation of the X-ray images
in [46]. Then, COVID-19 and Non-COVID-19 images
were dissociated by Na��ve Bayesian and random forest.

In addition, LBP has been combined with other
methods. For instance, in [8], the sub-band chest X-
ray images were elicited by employing LBP and Dual-
Tree Complex Wavelet Transform (DT-CWT). After
that CNN was performed for automatic classi�cation
between non-COVID-19 and COVID-19 from these
images. The best-achieved accuracy was 99.06%.

Li et al. [47] have made a multi-task learning
framework with an explainable multi-instance learning
for multi-lesion segmentation and COVID-19 diagnosis.
Their method [47] can learn task-related features adap-
tively with learnable weights. However, this method has
experimented with only CT images.

Ya�sar and Ceylan have used a twenty-three-layer
CNN architecture in the COVID-19 lung CT images
that LBP was applied to them. The highest value
of accuracy obtained with the help of lungs CT was
95.32% [48]. Although LBP can produce fair results,
it has drawbacks that a�ect results. There are some
methods that can tackle its problems. One of them is
ULBP which can cause better results. Another method
that makes better the categorization of COVID-19
is GF. According to the results of research in [31],
recognizing COVID-19 is 93% using GF and CNN.
Against, it is 85% without GF in lung CT scans.

Besides, the selection of the CNN suitable archi-
tecture impresses to diagnose COVID-19 performance.
The di�erent architectures that have been noticed
in COVID-19 researches as follows: VGG [49{51],
ResNet [15,52{67], GoogLeNet/Inception V1 to V3
[56,68{70], MobileNet [49,71,72], AlexNet [58,73,74].
Table 2 reports the pros and cons of di�erent CNN
architectures.

Among the above-mentioned architectures,
ResNet is applied more than others [15,52{62]. It
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has generated promising results [3,12,26]. In fact,
ResNet has resolved the accuracy degradation due to
an increase in network layers and depth for improving
performance [2].

Using pre-trained models is addressed to decrease
the low data problem. Recently, pre-trained ResNet
with 50, 101, and 152 layers were suggested for the
COVID-19 detection by Narin et al. [26]. The highest
e�ciency got using pre-trained ResNet50. So that
99.7% was COVID-19 detection accuracy on the X-ray
data. The loss value of ResNet50 was lower than other
models, too. It is noteworthy that combining methods
with the best performance can lead the COVID-19
identi�cation system to proper accuracy.

3. Proposed method

To accommodate all aforementioned bene�ts for
COVID-19 diagnosis, we combine GF, ULBP, and
ResNet51 that has a new Fully Connected Layer
(FCL) more than ResNet50. The proposed method
(ULGFBP-ResNet51) will be described in details be-
low.

3.1. Pre-processing
The grayscale images are taken and then resized. In-
creasing the contrast is done by histogram equalization.
Besides, the standard deviation and mean techniques
are applied to normalize the images.

3.2. GF
GF performance is similar to human visual percep-
tion [75]. So, it is capable of texture interpretations
well [76]. It representations frequency content in spe-
ci�c orientations for image texture analysis. In fact,
it can achieve a resolution optimally in frequency and
space domains [77,78].

We extract features of the chest and lung images
by GF with di�erent directions and scales. Because
GF can make e�ectively individuate between normal
and COVID-19 from all detailed frequencies texture
information [79]. The multiple Gabor Magnitude
Image (GMI) is obtained using a bank of multi-scale
and multi-direction GFs in the frequency domain. The
GF is de�ned as Eq. (1) and the Gabor representation
is derived by Eq. (2):

G(xp; yp) =
1

2��2 exp
�
�xp2 + yp2

2�2

�
:�

exp (j!xp)� exp
�
�!2�2

2

��
; (1)

G(x; y) = G(xp; yp) � I(x; y); (2)

where � and ! de�ne the direction and the scale of
GF. � = �

! , � means convolution, and we have xp =
x cos(�) + y sin(�), yp = �x cos(�) + y sin(�).

3.3. ULBP
The ULGFBP map is obtained by applying ULBP
to GMI (Figure 2). ULBP is a grayscale operator.
It generates 59 bins histogram instead of the 256-
bins histogram of LBP when the Sampling Point (SP)
number is 8. In other words, the ULBP histogram has
just 59 optimized output labels.

Suppose there are eight SPs around a pixel (see
Figure 3(b)). The ULBP method compares the Gray
Value (GV) of that pixel to each of its left-top, left-
bottom, right-bottom, left-middle, right-top, right-
middle, top, and bottom neighbors. Where the pixel's
value is lower than the neighbor's value, code \0".
Otherwise, code \1" (see Figure 3(c)). Follow the codes
clockwise. It gives an eight-digit binary number that

Figure 2. The ULGFBP map.
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Figure 3. The ULBP computation. (a) Input image, (b) 8 SP around a pixel, (c) comparing the central GV with
neighbours to set code \0" or \1", (d) convert an eight-digit binary number to decimal, (e) concatenating histogram of
regions as the ULBP histogram, and (f) the ULBP.

can convert to decimal (see Figure 3(d)). This eight-
digit binary number is a uniform pattern when has at
most two 0 to 1 or 1 to 0 transitions. For example,
01000000 has 2 transitions. Thus, it is uniform.

In the computation of the ULBP histogram for
each region, a bin is assigned to all non-uniform
patterns, and every uniform pattern puts into a sep-
arate bin. The ULBP histogram concatenates regions
histogram as the global feature vector (see Figure
3(e)). The short feature vector and never changing
on rotation are the main advantages of this method
[38,39]. Mathematically, ULBP and its histogram are:

ULBP(SP;R) = jsign(GVSP �GVc)
� sign(GV0 �GVc) j

+
X(SP�1)

(es=1)
jsign(GVep �GVc)

�sign(GV(ep�1) �GVc)�� ; (3)

HULBP

=

8><>:
SP�1P
ep=0

sign(GVep �GVc) if ULBPSP;R � 2

SP + 1 otherwise (4)

where ep represents each SP. R is the neighborhood
radius where is shown in Figure 3(b). c means middle
pixel.

3.4. ResNet51
Fifty-one layers are suit due to the time complexity
of increasing more the network layers. The bottleneck
design can reduce this complexity, too. The ResNet50
model as an improved version of CNN is trained on the
ImageNet dataset. In fact, it is trained with about
fourteen million various images [26,80]. Although
its network is more complex and deeper, distortion
prevention is its pro�t. In addition, it has fast training
due to bottleneck blocks [26].

The ResNet51 is proposed for e�cient COVID-
19 identi�cation on the X-ray and lung CT images.
In fact, we suggest pre-trained ResNet51 that has
a new layer more than ResNet50 to extract deep
features. Because it can be reused with smaller and
similar datasets. The model architecture is displayed
in Figure 4. The optimization of the proposed model
is easy and it also can produce high accuracy. Its skip
connections can solve the vanishing gradient problem.

The input of the network is the ULGFBP map
instead of the original image to reach e�cient per-
formance. Therefore, the network can extract deep,
essential, and robust features. We create a new FCL
and also alter the last pre-trained ResNet50 layers
according to our data. In fact, we adapt them to
our categorization task. These layers are softmax,
fully connected, and classi�cation layers. In another
word, we replace the last three layers with new layers.
Therefore, ResNet51 is made. Output size represents
the three COVID-19, pneumonia, and normal classes.

In summary, the ULGFBP maps are passed
through the modi�ed pre-trained ResNet51 to obtain
features and classi�ed them to COVID-19, pneumonia,
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Figure 4. The framework of the ULGFBP-ResNet51 method.

and normal using the network classi�er. The input size
is 224� 224� 3. Figure 4 demonstrates the framework
of the ULGFBP-ResNet5.

4. Experiments and results

We analyze the implementation of the ULGFBP-
ResNet51 in this section. Also, we express its fruit-
fulness on used datasets. Experiments are done using
MATLAB 2020 using a processor of Intel Core i7 and
RAM of 8 GB onboard.

4.1. Datasets
One of the prerequisites in deep learning is huge
training images. We use the dataset collected by El-
Shafai and Abd El-Samie for COVID-19 [80]. Its X-ray

and CT image data consist of COVID-19 and normal. It
is gathered from the GitHub Cohen et al. data [81] and
further datasets on internet. Augmentation techniques
have been applied to generate more than 17000 images.
There are 4044 COVID-19 and 5500 normal X-ray data
in a folder. In addition, 5427 COVID-19 and 2628
normal CT data are put in another folder.

Besides, we utilize the pneumonia dataset pub-
lished by Kermany et al. [82]. It has 5232 chest X-
ray data. 3883 images belong to pneumonia-infected
patients, and 1349 images are collected from healthy
persons. In addition, we employ the datasets used
in [83,84], which contain 1768 X-ray images (720
normal, 949 COVID-19, and 99 SARS instances) with
4020� 4892 pixels and 2926 CT (758 normal and 2168
COVID-19 instances). A sample of normal, COVID-19,
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Figure 5. A sample of the used data (a) X-ray and (b) CT.

and pneumonia X-ray and CT data from used datasets
is illustrated in Figure 5.

4.2. Proposed method
The grayscale CT or X-ray image is received from the
above-mentioned datasets. Using histogram equaliza-
tion improves the contrast of the image. Also, the
image is normalized by the standard deviation and
mean techniques.

We extract features using six �lters contain
two directions and three scales GF. In fact, GMI is
obtained by them. Selecting these numbers of �lters
not only is appropriate but also can decrease the
feature dimension.

The obtained GMI is partitioned into 3 � 3 non-
overlapping blocks. Thus, the neighborhood radius (R)
sets to 1. On the other hand, SP = 4� (2R) that if R
is 1, then SP is 8. Hence, ep is 0 to SP � 1 (i.e., 0 to
7). The cause of this parameter selection is achieving
the best performance according to our experiments.

ULBP code and ULBP histogram are computed.
So that, each neighborhood pixel (ep) value is com-
pared to the c value in each block. Where the pixel's
value is lower than the neighbor's value, code \0".
Otherwise, code \1". An eight-digit binary number is
got when moving clockwise and putting the 0 and 1 s. If
there are at most two 0 to 1 or 1 to 0 transitions then,

the pattern is uniform. Thus, a histogram separate bin
is assigned to it. Otherwise, it is placed into a single
bin. Therefore, the histogram has 59 output labels. For
other blocks, ULBP and its histogram are calculated.
Finally, the histograms from the �rst block to the last
block are concatenated to get the ULGFBP histogram
and ULGFBP map.

The ULGFBP map is the input of pre-trained
ResNet51. Its size is converted to 224�224�3. We have
4993 COVID-19, 3982 pneumonia, and 7569 normal
ULGFBP maps obtained from X-ray images. In addi-
tion, we have 7595 COVID-19, and 3386 normal UL-
GFBP maps procured from CT images. Then, we use
the rotation technique to balance the number of maps.

We save the ULGFBP maps from X-ray images
in di�erent folders by COVID-19-X, Normal-X, and
Pneumonia-X class name. Also, we keep the ULGFBP
maps from CT images in di�erent folders by COVID-
19-CT and Normal-CT class name. All images (maps)
are tagged.

Pre-trained ResNet-51 is modi�ed according to
new data. The training parameters are Batch Size
(BS), the number of epochs, Initial Learning Rate
(ILR). We utilize Adam optimizer and choose a mini
BS of 20. The ILR sets on 0.0001. Max epochs are 5.

Notice that we have created a new FCL. The FCL
of the network is used for learning the classi�cation



1098 V. Esmaeili et al./Scientia Iranica, Transactions D: Computer Science & ... 31 (2024) 1091{1104

Figure 6. The loss and accuracy curves for our proposed method using dataset (a) CT and (b) X-ray.

Figure 7. The confusion matrix of our proposed ULGFBP-ResNet51 method for used datasets (a) X-ray and (b) CT.

function. Further, we have replaced the last three
layers of the network with new FCL, softmax, and
classi�cation layers. This work is to adapt the network
with our categorization task.

We train the network and optimize hyper-
parameters. We train it once with ULGFBP maps
from X-ray data for three COVID-19, normal, and
pneumonia classes. Training took 12 hours and 43
minutes 18 sec. Once again, the network is trained
by two classes COVID-19 and Normal ULGFBP maps
from CT images. Training took 6 hours and 37 minutes
20 sec.

The train network function is used for training
the ResNet51 model. Also, 10-fold cross-validation
strategy is employed. The ULGFBP maps are ran-
domly split into ten folds containing roughly the same
proportions of the class labels in each fold. In the ten
experiments, nine folds are used for training and one
for testing. The average accuracy is reported.

4.3. Experimental results and discussion
The achieved accuracy is 99.97% for COVID-19 iden-
ti�cation using our proposed method. It demonstrates

that our proposed method has outperformance to
categorize COVID-19 images. In another word, the
evaluation of the e�ectiveness of the proposed method
is its accuracy. The loss and accuracy curves for our
proposed method using the X-ray and CT datasets are
pictured in Figure 6. As we have seen, the loss is
very low and accuracy is so high on both datasets.
Besides, the usefulness of the proposed method is
measured using the accuracy, F1-score, sensitivity,
and precision metrics [85]. The computation of our
method's true predictions in the whole of predictions is
named precision. The overall measure of the method's
accuracy is shown by F1-score, too.

The confusion matrix not only measures the
e�ciency of our method on the testing dataset but also
shows the classi�ed and miss-classi�ed images correctly.
In fact, it speci�es the potential of our proposed
method for COVID-19, pneumonia, and normal clas-
si�cation. This matrix has True Positive (TP), True
Negative (TN), False Positive (FP), False Negative
(FN) expected outcomes. The confusion matrix of
our proposed method is illustrated in Figure 7. The
identi�ed anomaly with the correct diagnosis is TP.
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Table 3. Results of COVID-19 diagnosis using the ULGFBP-ResNet51 and other methods on X-ray.

Method ACC (%) Sensitivity (%)
Contrastive Multi-Task CNN (CMT-CNN) [27] 97.23 92.97
Pre-trained VGG-19 [49] 93.48 92.85
ResNet-50 + SVM [67] 93.28 97
LBP + GF + SVM [18] 97.16 96.9
LBP + DT-CWT + CNN [8] 99.06 96.53
LBP + HOG + SVM [18] 92.83 93.52
ResNet101 [26] 95.3 93.8
Proposed ULGFBP-ResNet51 method 99.97 99.9

Table 4. The results of COVID-19 diagnosis using the ULGFBP-ResNet51 and other methods on CT.

Method ACC (%) Sensitivity (%)

Contrastive Multi-Task CNN (CMT-CNN) [27] 93.46 90.57
Random Forest (RF) [19] 87.9 90.7
Deep CNN [28] 73 95
Explainable multi-instance multi-task network [47] 98.62 89.05

Proposed ULGFBP-ResNet51 method 99.9 100

The number of mistake measures is TN. The classi�ed
sample as an anomaly diagnosis is FP. The classi�ed
anomalies as ordinary are FN.

ACC(%) =
TN + TP

TN + TP + FN + FP
� 100; (5)

Precision (%) =
TP

FP + TP
� 100; (6)

Sensitivity (%) =
TP

FN + TP
� 100; (7)

F1score (%) = 2
�

Sensitivity � Precision
Sensitivity + Precision

�
: (8)

Table 3 and 4 list the results of the proposed ULGFBP-
ResNet51 to compare with other methods. Evaluation
of the performance of the ULGFBP-ResNet51 and
state-of-the-arts are represented in Figure 8. It is
necessary to point out that due to ResNet51 is 51
layers deep, low time consumption is its advantage in
comparison with ResNet101. In addition, its accuracy
is superior to other similar models.

Also, Tables 5 and 6 concentrate on cross-
validation data to evaluate our ULGFBP-ResNet51
method. These tables illustrate the performance of our
proposed method in terms of the F1 score for each fold
and their average. According to the results, the average
of the F1 metric is more than 0.995 in X-ray and CT.

5. Conclusion

Economic, education, tourism, transportation, social
interaction and on top of that health care system have

Figure 8. Evaluation of the ULGFBP-ResNet51 and
state-of-the-arts.

been hardly devastated by COVID-19. It is proven
that by early stage diagnosis of this pandemic, the
treatment process proceeds much faster and easier.
Therefore, in this manuscript, we propose a novel
method called ULGFBP-ResNet51 which could be uti-
lized for autonomous and e�cient COVID-19 diagnosis
from CT and X-ray datasets. It takes advantage
of two texture-based methods i.e., Gbor Fiber (GF)
and Uniform Local Binary Pattern (ULBP) accom-
plished with deep learning (i.e., ResNet51). Results on
COVID-19 datasets demonstrate the outperformance
of our approach which provides promising accuracy.
The achieved accuracy is 99.97% for COVID-19 im-
ages classi�cation. The proposed method could be
further exerted on Computed Tomography (CT) and
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Table 5. The results of cross-validation using the
proposed ULGFBP-ResNet51 on X-ray.

F1 score

Fold 1 0.996
Fold 2 0.998
Fold 3 0.997
Fold 4 0.997
Fold 5 0.996
Fold 6 1
Fold 7 0.998
Fold 8 0.997
Fold 9 0.999
Fold 10 1

Average 0.998

Table 6. The results of cross-validation using the
proposed ULGFBP-ResNet51 on CT.

F1 score

Fold 1 0.998
Fold 2 0.999
Fold 3 0.997
Fold 4 0.997
Fold 5 0.999
Fold 6 0.998
Fold 7 1
Fold 8 0.999
Fold 9 1
Fold 10 0.999

Average 0.999

X-ray data in the future for other related diagnostic
challenges such as Inuenza, tumors and etc.
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