Development of an efficient formulation for Volterra’s equations of motion for multibody dynamical systems

Document Type : Research Article

Authors

Department of Mechanical Engineering, Center of Excellence in Design, Robotics and Automation (CEDRA), Sharif University of Technology, Tehran, Iran

Abstract

In this paper, we present an efficient form of Volterra’s equations of motion for both unconstrained and constrained multibody dynamical systems that include ignorable coordinates. The proposed method is applicable for systems with both holonomic and nonholonomic constraints. Firstly, based on the definition of ignorable coordinates, one of the motion constants (the generalized momentum vector corresponding to the ignorable coordinates) is considered as a constraint, which will be referred to as dynamical constraints. These constraints, along with ordinary constraints, namely kinematical constraints, are then used in the proposed method to derive motion equations. This approach gives the minimum number of equations needed to study the behavior of a dynamical system. Three simulation examples are provided to evaluate the proposed method and to compare it to existing methods. The first case study is a constrained dynamical system, which moves in two-dimensional space. The second one is an unconstrained multibody system including three connected rigid bodies. Finally, the last case study includes a cubic satellite that uses a deployable boom to move a mass to a desired location. The results of the numerical simulations are compared to the conventional methods and the better performance of the proposed method is demonstrated.

Keywords

Main Subjects


References:
1.Ginsberg, J.H. “Introduction to analytical mechanics”,In Advanced Engineering Dynamics, F. Padgett, Ed.,2nd Edn., pp. 245-308, Cambridge University Press,Cambridge, UK (1998).https://doi.org/10.1017/CBO9780511800214
2.Dirac, P.A.M. “The Hamilton method”, In Lectures onQuantum Mechanics, Ed., 1st Edn., pp. 1-25, BelforGraduate School of Science, Yeshiva University, NewYork, USA (1964).
3.Capecchi, D. and Drago, A. “On Lagrange’s history ofmechanics”, Meccanica, 40(1), pp. 19-33 (2005).https://doi.org/10.1007/s11012-004-2198-z
4.Köppe, J., Grecksch, W., and Paul, W. “Derivation andapplication of quantum Hamilton equations of motion”, Ann. Phys. (Berl.), 529(3), pp. 1-9 (2017). https://doi.org/10.1002/andp.201600251
5.Borisov, A.V., Mamaev, I.S., and Bizyaev, I.A. “TheJacobi integral in nonholonomic mechanics”, Regul.Chaotic Dyn., 20(3), pp. 383-400 (2015). https://doi.org/10.1134/S1560354715030107 
6.Qin, Y., Wang, Z., and Zou, L. “Dynamics of nonlineartransversely vibrating beams: Parametric and closed-form solutions”, Appl. Math. Model., 88, pp. 676-687(2020). https://doi.org/10.1016/j.apm.2020.06.056
7.Papastavridis, J.G. and Yagasaki, K. “Analyticalmechanics, a comprehensive treatise on the dynamics ofconstrained systems; for engineers, physicists, andmathematicians”, ASME. Appl. Mech. Rev., 56(2), pp.B22-B23 (2003). https://doi.org/10.1142/8058
8.Ginsberg, J.H. “Alternative formulations”, InEngineering Dynamics, P. Gordon, Ed., 2nd Edn., pp.552-636, Cambridge University Press, Cambridge, UK(2008). https://doi.org/10.1017/CBO9780511805899
9.Gibbs, J.W. “On the fundamental formulae ofdynamics”, Amer. J. Math., 2(1), pp. 49-64 (1879).https://doi.org/10.2307/2369196
10.Ne_mark, J.I. and Fufaev, N.A. “Analytic dynamics ofnonholonomic systems”, In Dynamics of NonholonomicSystems, J.R. Barbour, Ed., 1st Edn., pp. 87-211,American Mathematical Society (2004).https://doi.org/10.1090/mmono/033
11.Haug, E.J. “Extension of Maggi and Kane equations toholonomic dynamic systems”, J. Comput. Nonlin.Dyn., 13(12), pp. 1-6 (2018). https://doi.org/10.1115/1.4041579
12.Hamel, G., Theoretische Mechanik: Eine EinheitlicheEinführung in die gesamte Mechanik, Springer-Verlag,Berlin (1949).https://doi.org/10.1007/978-3-642-88463-4
13.Kane, T.R. “Dynamics of nonholonomic systems”, J.Appl. Mech., 28(4), pp. 574-578 (1961).https://doi.org/10.1115/1.3641786
14.Kane, T.R. and Levinson, D.A. “Formulation ofequations of motion”, In Dynamics, Theory andApplications, J.P. Holman, Ed., 1st Edn., pp. 190-258,McGraw Hill, New York, USA (1985).
15.Zboiński, K. “Relative kinematics exploited in Kane'sapproach to describe multibody systems in relativemotion”, Acta Mech., 147(1), pp. 19-34 (2001).https://doi.org/10.1007/BF01182349
16.Udwadia, F.E. and Kalaba, R.E. “The fundamentalequation in generalized coordinates”, In AnalyticalDynamics: A New Approach, pp. 175-219, CambridgeUniversity Press, Cambrdige, UK (2007). https://doi.org/10.1017/CBO9780511665479
17.Udwadia, F.E. and Schutte, A.D. “Equations of motionfor general constrained systems in Lagrangianmechanics”, Acta Mech., 213(1), pp. 111-129 (2010).https://doi.org/10.1007/s00707-009-0272-2
18.Zhao, X.M., Chen, Y.H., Zhao, H., et al. “Udwadia–Kalaba equation for constrained mechanical systems:formulation and applications”, Chin. J. Mech.Eng., 31(1), pp. 1-14 (2018).https://doi.org/10.1186/s10033-018-0310-x
19.Liu, P., Hao, Y., and Wang, Q. “Distributed formation-containment control of networked mobile robots usingthe Udwadia–Kalaba approach”, IEEE Trans. NetworkSci. Eng., 11(1), pp. 848-857 (2023).https://doi.org/10.1109/TNSE.2023.3308992
20.Zhen, S., Meng, C., Xiao, H., et al. “Robust approximate constraint following control for SCARA robots’ systemwith uncertainty and experimental validation”, ControlEng. Pract., 138, pp. 1-12 (2023).https://doi.org/10.1016/j.conengprac.2023.105610
21.Straižys, A., Burke, M., and Ramamoorthy, S. “Learning robotic cutting from demonstration: Non-holonomicDMPs using the Udwadia-Kalaba method”, 2023 IEEEInternational Conference on Robotics and Automation(ICRA), London, UK, pp. 5034-5040 (2023). https://doi.org/10.1109/ICRA48891.2023.10160917
22.Zhang, L. and Zhang, D. “A two-loop procedure basedon implicit Runge–Kutta method for index-3 dae ofconstrained dynamic problems”, NonlinearDynam., 85(1), pp. 263-280 (2016).https://doi.org/10.1007/s11071-016-2682-8
23.Marques, F., Souto, A.P., and Flores, P. “On theconstraints violation in forward dynamics of multibodysystems”, Multibody Syst. Dyn., 39(4), pp. 385-419(2017). https://doi.org/10.1007/s11044-016-9530-y
24.Rodríguez, J.I., Jiménez, J.M., Funes, F.J., et al.“Recursive and residual algorithms for the efficientnumerical integration of multi-bodysystems”, Multibody Syst. Dyn., 11(4), pp. 295-320(2004).https://doi.org/10.1023/B:MUBO.0000040798.77064.bc
25.Roberson, R.E. and Schwertassek, R. “Computersimulation”, In Dynamics of Multibody Systems, 1stEdn., pp. 365-411, Springer Berlin, Heidelberg,Germany (1988). https://doi.org/10.1007/978-3-642-86464-3
26.Liu, C.Q. and Huston, R.L. “Another form of equationsof motion for constrained multibodysystems”, Nonlinear Dynam., 51(3), pp. 465-475(2008). https://doi.org/10.1007/s11071-007-9225-2
27.Gattringer, H., Bremer, H. and Kastner, M. “Efficientdynamic modeling for rigid multi-body systems with contact and impact”, Acta Mech., 219(1), pp. 111-128 (2011). https://doi.org/10.1007/s00707-010-0436-0
28.Appell, P. “Sur les mouvements de roulment; equationsdu mouvement analougues a celles deLagrange”, Comptes Rendus., 129, pp. 317-320 (1899).
29.Pius, P. and Selekwa, M. “The equivalence ofBoltzmann–Hamel and Gibbs–Appell equations inmodeling constrained systems”, Int. J. Dyn. Control,11(5), pp. 2101-2111 (2023). https://doi.org/10.1007/s40435-023-01119-3
30.Müller, A. “On the Hamel coefficients and theBoltzmann–Hamel equations for the rigid body”, J.Nonlinear Sci., 31(2), pp. 1-39 (2021).https://doi.org/10.1007/s00332-021-09692-7
31.Mirtaheri, S.M. and Zohoor, H. “Quasi-velocitiesdefinition in Lagrangian multibodydynamics”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical EngineeringScience, 235(20), pp. 4679-4691 (2021). https://doi.org/10.1177/0954406221995852
32.Mirtaheri, S.M. and Zohoor, H. “Efficient formulationof the Gibbs–Appell equations for constrainedmultibody systems”, Multibody Syst. Dyn., 53(3), pp.303-325 (2021). https://doi.org/10.1007/s11044-021-09798-6
33.Honein, T.E. and O’Reilly, O.M. “On the Gibbs–Appellequations for the dynamics of rigid bodies”, J. Appl.Mech., 88(7), pp. 1-8 (2021).https://doi.org/10.1115/1.4051181
34.Mirtaheri, S.M. and Zohoor, H. “The explicit gibbs-appell equations of motion for rigid-body constrainedmechanical system”, 2018 6th RSI InternationalConference on Robotics and Mechatronics(IcRoM), Tehran, Iran, pp. 304-309 (2018).https://doi.org/10.1109/ICRoM.2018.8657637
35.Bajodah, A.H. and Hodges, D.H. “Canonical Kane’sequations of motion for discrete dynamicalsystems”, AIAA J., 57(10), pp. 4226-4240 (2019). https://doi.org/10.2514/1.J057603
36.Korayem, M.H., Shafei, A.M., and Shafei, H.R.“Dynamic modeling of nonholonomic wheeled mobilemanipulators with elastic joints using recursive Gibbs–Appell formulation”, Sci. Iran., 19(4), pp. 1092-1104(2012). https://doi.org/10.1016/j.scient.2012.05.001
37.Talaeizadeh, A., Forootan, M., Zabihi, M., et al.“Comparison of Kane’s and Lagrange’s methods inanalysis of constrained dynamical systems”, Robotica,38(12), pp. 2138-2150 (2020).https://doi.org/10.1017/S0263574719001899
38.Korayem, M.H. and Shafei A.M. “Motion equationsproper for forward dynamics of robotic manipulatorwith flexible links by using recursive Gibbs-Appellformulation”, Sci. Iran., 16(6), pp. 479-495 (2009).
39.Malayjerdi, M. and Akbarzadeh, A. “Analyticalmodeling of a 3-d snake robot based on sidewindinglocomotion”, Int. J. Dyn. Control, 7(1), pp. 83–93(2019). https://doi.org/10.1007/s40435-018-0441-z
40.Bilgili, D., Budak, E., and Altintas, Y. “Multibodydynamic modeling of five-axis machine tools withimproved efficiency”, Mech. Syst. Signal Pr., 171, pp. 1-20 (2022). https://doi.org/10.1016/j.ymssp.2022.108945
41.Pishkenari, H.N. and Heidarzadeh, S. “A novelcomputer-oriented dynamical approach with efficientformulations for multibody systems including ignorablecoordinates”, Appl. Math. Model., 62, pp. 461-475(2018).https://doi.org/10.1016/j.apm.2018.06.012
Volume 32, Issue 2
Transactions on Mechanical Engineering
January and February 2025 Article ID:6891
  • Receive Date: 14 June 2022
  • Revise Date: 21 September 2023
  • Accept Date: 16 April 2024