References:
1. Wang, J.K. and Khonsari, M.M. “Bifurcation analysis of a flexible rotor supported by two fluid-film journal bearings”, Journal of Tribology, 128, pp. 594-603 (2006). https://doi.org/10.1115/1.2197842.
2. Wang, J.K. and Khonsari, M.M. “Influence of inlet oil temperature on the instability threshold of rotorbearing systems”, Journal of Tribology, 128, pp. 319- 326 (2006). https://doi.org/10.1115/1.2162920.
3. Chasalevris, A., Dohnal, F., and Chatzisavvas, I. “Experimental detection of additional harmonics due to wear in journal bearings using excitation from a magnetic bearing”, Tribology International, 71, pp. 158-167 (2014). https://doi.org/10.1016/j.triboint.2013.12.002.
4. Miraskari, M., Hemmati, F., and Gadala, M.S. “Nonlinear dynamics of flexible rotors supported on journal bearings—Part I: Analytical bearing model”, Journal of Tribology, 140(2), 021704 (2018). https://doi.org/10.1115/1.4037730.
5. Miraskari, M., Hemmati, F., and Gadala, M.S. “Nonlinear dynamics of flexible rotors supported on journal bearings—part II: numerical bearing model”, Journal of Tribology, 140(2), 021705 (2018). https://doi.org/10.1115/1.4037731.
6. Anastasopoulos, L. and Chasalevris, A. “Bifurcations of limit cycles in rotating shafts mounted on partial arc and lemon bore journal bearings in elastic pedestals”, Journal of Computational and Nonlinear Dynamics, 17(6), p. 061003 (2022). https://doi.org/10.1115/1.4053593.
7. Noah, S.T. and Sundararajan, P. “Significance of considering nonlinear effects in predicting the dynamic behavior of rotating machinery”, Journal of Vibration and Control, 1(4), pp. 431-458 (1995). https://doi.org/10.1177/107754639500100403.
8. Mahroug, Y., Khaldi, B.S., Guemana, M., et al. “ARMAX-based identification and diagnosis of vibration behavior of gas turbine bearings”, Diagnostyka, 24(3). 2023310 (2023). https://doi.org/10.29354/diag/171277.
9. Ehrich, F. “Observations of subcritical superharmonic and chaotic response in rotordynamics”, Journal of Vibration and Acoustics, 114(1), pp. 93-100 (1992). https://doi.org/10.1115/1.2930240.
10. Wu, B. “Dynamic performance simulation analysis method of split shaft gas turbine based on RBF neural network”, Energy Reports, 7, pp. 947-958 (2021). https://doi.org/10.1016/j.egyr.2021.09.178.
11. Ju, J., Li, W., Wang, Y., et al. “Dynamics and nonlinear feedback control for torsional vibration bifurcation in main transmission system of scraper conveyor directdriven by high-power PMSM”, Nonlinear Dynamics, 93, pp. 307-321 (2018). http://dx.doi.org/10.1007/s11071-018-4193-2.
12. Li, Z., Li, J., and Li, M. “Nonlinear dynamics of unsymmetrical rotor-bearing system with fault of parallel misalignment”, Advances in Mechanical Engineering, 10(5), pp.1-17 (2018). https://doi.org/10.1177/1687814018772908.
13. Hafaifa, A., Guemana, M., and Daoudi, A. “Vibrations supervision in gas turbine based on parity space approach to increasing efficiency”, Journal of Vibration and Control, 21(8), pp. 1622-1632 (2015). https://doi.org/10.1177/1077546313499927.
14. Djeddi, C., Hafaifa, A., Iratni, A., et al. “Robust diagnosis with high protection to gas turbine failures identification based on a fuzzy neuro inference monitoring approach”, Journal of Manufacturing Systems, 59, pp. 190-213 (2021). https://doi.org/10.1016/j.jmsy.2021.02.012.
15. Mohamadi, A., Shahgholi, M., and Ashenai Ghasemi, F. “Nonlinear dynamic and bifurcations analysis of an axially moving circular cylindrical nanocomposite shell”, International Journal of Mechanics and Materials in Design, 18(1), pp. 125-154 (2022). https://doi.org/10.1007/s10999-021-09571-9.
16. Avramov, K. and Malyshev, S. “Bifurcations and chaotic forced vibrations of cantilever beams with breathing cracks”, Engineering Fracture Mechanics, 214, pp. 289-303 (2019). https://doi.org/10.1016/j.engfracmech.2019.03.021.
17. Avramov, K. and Raimberdiyev, T. “Bifurcations behavior of bending vibrations of beams with two breathing cracks”, Engineering Fracture Mechanics, 178, pp. 22-38 (2017). https://doi.org/10.1016/j.engfracmech.2017.04.006.
18. Aghayari, J., Bab, S., Safarpour, P., et al. “A novel modal vibration reduction of a disk-blades of a turbine using nonlinear energy sinks on the disk”, Mechanism and Machine Theory, 155, 104048 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.1040.
19. Ma, L., Yao, M., Zhang, W., et al. “Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow”, Applied Mathematics and Mechanics, 41, pp. 1861-1880 (2020). https://doi.org/10.1007/s10483-020-2668-8.
20. Noiray, N. and Schuermans, B. “Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors”, International Journal of Non-Linear Mechanics, 50, pp. 152-163 (2013). https://doi.org/10.1016/j.ijnonlinmec.2012.11.008.
21. Mao, X.Y., Gao, S.Y., Ding, H., et al. “Static bifurcation and nonlinear vibration of pipes conveying fluid in thermal environment”, Ocean Engineering, 278, 114418 (2023). https://doi.org/10.1016/j.oceaneng.2023.114418.
22. Chasalevris, A. “Stability and Hopf bifurcations in rotor-bearing-foundation systems of turbines and generators”, Tribology International, 145, p. 106154 (2020). https://doi.org/10.1016/j.triboint.2019.106154.
23. Wang, X., Long, X., Yue, X., et al. “Bifurcation analysis of stick–slip vibration in a 2-DOF nonlinear dynamical system with dry friction”, Communications in Nonlinear Science and Numerical Simulation, 111, p. 106475 (2022). https://doi.org/10.1016/j.cnsns.2022.106475.
24. Zheng, Y., Wang, G., Zhu, Q., et al. “Bifurcations and nonlinear dynamics of asymmetric tri-stable piezoelectric vibration energy harvesters”, Communications in Nonlinear Science and Numerical Simulation, 119, 107077 (2023). https://doi.org/10.1016/j.cnsns.2022.107077.
25. Asghari, H. and Dardel, M. “Parameter converting method for bifurcation analysis of nonlinear dynamical systems”, Scientia Iranica, 27(1), pp. 310- 329 (2020). https://doi.org/10.24200/sci.2018.50714.1832.
26. Baum, C., Leister, T., and Seemann, W. “Stability and bifurcation analysis of a rotor in rigid and foil air bearings utilized for the identification of the air whirl effect”, Journal of Sound and Vibration, 536, 117067 (2022). https://doi.org/10.1016/j.jsv.2022.117067.
27. Zhuang, G., Zong, W., and Tang, Y. “Statistical analysis and suppression of vibration frequencybifurcation in diamond turning of Al 6061 mirror”, Mechanical Systems and Signal Processing, 198, p. 110421 (2023). https://doi.org/10.1016/j.ymssp.2023.110421.
28. Jahangiri, M. and Bagheri, E. “Effect of radially functionally graded materials on the primary resonances of large amplitude flexural vibration of inextensional rotating shafts”, Engineering Structures, 226, p. 111362 (2021). https://doi.org/10.1016/j.engstruct.2020.111362.
29. Li, Y.G. “Aero gas turbine flight performance estimation using engine gas path measurements”, Journal of Propulsion and Power, 31(3), pp. 851-860 (2015). https://doi.org/10.2514/1.B35381.
30. Torres-Herrera, U. and Nakamura, K. “Flow differentiation within nanotube networks with symmetric bifurcations by local bending vibration: A theoretical study”, Journal of Fluids and Structures, 109, 103502 (2022). https://doi.org/10.1016/j.jfluidstructs.2022.103502.
31. Zhao, Y.Z., Chiu, Y.J., Yang, C.H., et al. “Research on heat-elastic coupled vibration in a rotating rigid disk rotor system”, Journal of Mechanical Science and Technology, 36(4), pp. 1667-1678 (2022). https://doi.org/10.1007/s12206-022-0109-7.
32. Jin, Q. and Ren, Y. “Coupled resonance of FGM nanotubes transporting super-critical high-speed pulsatile flow under forced vibration: size-dependence and bifurcation topology”, Computer Methods in Applied Mechanics and Engineering, 404, 115834 (2023). https://doi.org/10.1016/j.cma.2022.115834.
33. Zhang, W., Gu, X.J., and Zhang, Y.F. “New modeling on vibrations and bifurcations of FGGP reinforced pretwisted composite rotating blade under axial aerodynamic force: Theoretical and numerical researches”, Thin-Walled Structures, 184, 110523 (2023). https://doi.org/10.1016/j.tws.2023.110523.
34. Luo, Z., Wang, J., Tang, R., et al. “Research on vibration performance of the nonlinear combined support-flexible rotor system”, Nonlinear Dynamics, 98(1), pp. 113-128 (2019). https://doi.org/10.1007/s11071-019-05176-2.
35. Lv, B., Jin, X., Cao, J., et al. “Advances in numerical modeling of environmental barrier coating systems for gas turbines”, Journal of the European Ceramic Society, 40(9), pp. 3363-3379 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.036.
36. Wang, L., Wang, A., Jin, M., et al. “Nonlinear effects of induced unbalance in the rod fastening rotorbearing system considering nonlinear contact”, Archive of Applied Mechanics, 90, pp. 917-943 (2020). https://doi.org/10.1007/s00419-019-01645-7.
37. Liu, X. and Ma, L. “Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems”, Applied Mathematics and Computation, 385, p. 125423 (2020). https://doi.org/10.1016/j.amc.2020.125423.
38. Ma, L., Yao, M., Zhang, W., et al. “Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow”, Applied Mathematics and Mechanics, 41, pp. 1861-1880 (2020). https://doi.org/10.1007/s10483-020-2668-8.