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Abstract 

The emergence of modern technology in the oil and gas sectors presents an opportunity to enhance 

productivity, minimize environmental impact and optimize the energy efficiency of these facilities, 

leading to increased economic benefits. In pursuit of sustainable development in gas-turbine 

operations, this study develops a mathematical model that is validated through experimental tests for 

monitoring the vibrations of an MS5002B gas turbine located in a gas compressor station. The primary 

objective is to determine the bifurcation indices, ensuring the continuous stability of the studied 

turbine's operating state while monitoring its vibrations in real-time. 

A comparison between the experimental and numerical results of the developed model is validated 

against real operating data, enabling predictions of the complex dynamic behaviors within the bearing-

rotor system of the examined turbine. Robustness tests, based on real-time operating data, are 

conducted to analyze the impacts of undesirable effects that may disrupt the turbine system, as 

depicted in the bifurcation diagram. This approach facilitates the monitoring of the dynamic behavior of 

vibratory phenomena in the examined turbine, allowing for the establishment of reliable diagnostic 

elements to ensure component stability and prevent unscheduled production shutdowns. Ultimately, 

this approach enhances energy efficiency while delivering environmental and economic 

improvements. 

Keywords: Stability analysis, bifurcation indices, equilibrium equations, gas turbines, vibration 

reduction. 
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Nomenclature 

1Q  Rotor center in bearing N° 1 

2Q  Compressor center 

3Q  Rotor center in bearing N° 2 

4Q  Turbine center 

1k , 2k  and 3k  Shaft stiffness matrix of the 

rotor 

R  Radius of bearing 

L  Length of bearing 
z  Dimensionless axial displacement 
p   Dimensionless pressure of the oil film  

bC   Radial clearance of the bearing  

x  and y  Dimensionless horizontal and vertical 

displacements  

h   Dimensionless thickness of the oil film 

e   Relative eccentricity of rotor 

,i iX Y    Horizontal and vertical displacements 

  Dimensionless time 

rf     Rotational frequency 

   Sommerfeld number 

    Dynamic viscosity 

xf  and yf  Dimensionless nonlinear forces of 

the oil film 
g    Acceleration of gravity 

w    Angular velocity of the rotor  

1XF , 1YF , 3XF  and 3YF  Components of the 

nonlinear forces of the oil film 
r    Eccentricity of the rotor 
c   Damping of the system  

iX , iY  Horizontal and vertical displacements  

1m   Concentrated masses of the of bearing 

N°1 

3m   Concentrated masses of the of bearing 

N°2 

2m   Concentrated masses of the compressor 

4m   Concentrated masses of the turbine 

sx   Equilibrium points 

J   Jacobian matrix  

i   Eigenvalues  

I   Identity matrix  

f   Nonlinear function 

   Control parameter vector 

c   Critical bifurcation value 

D  Determinant   

cw   Critical value of rotation  

  Dynamic viscosity  

r   Rotor eccentricity  
c  Rotor damping  

k  Rotor stiffness  

 

1. Introduction 

In recent times, advancements in modern technologies and computing have provided reliable tools for 

enhancing the profitability and sustainability of industrial facilities. These innovations have the potential 

to improve both environmental and economic performance. Nevertheless, the monitoring of gas 

turbines in the oil and gas sector remains a significant challenge. The primary concern lies in 

mitigating the adverse effects resulting from sequences of turbine start-ups, optimizing yields, 

enhancing production performance, and preventing unforeseen failures. 

To address this issue, this study proposes an original approach centered on the analysis of vibratory 

phenomena bifurcation within the bearing-rotor system of the MS5002B turbine, situated in a gas 

compression station. The objective is to ensure effective monitoring of this turbine, incorporating 

practical models characterizing the dynamic behaviors of vibration bifurcations that affect the 

examined turbine. This is achieved by integrating degradation evaluation indices, employing 

experimental tests based on turbine input/output data to predict real-time vibration cycles. 

To address the complexities of dynamic behavior in gas turbine systems subjected to high-power 

transmission and rotation, a monitoring approach based on various vibration bifurcations is 

implemented for the MS5002B turbine bearing-rotor system, taking into consideration the stability-to-

efficiency ratio. 
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It is essential to recognize that rotating machines can encounter balance issues stemming from 

multiple sources of instability, particularly those caused by rotor-stator contact. Vibration dynamics can 

pose significant risks to rotating systems. Therefore, the rotational state must be considered when 

aligning the shaft to prevent bearing damage. Previous work in modern literature has been dedicated 

to the study of rotor stability and their responses at bifurcation limits. For example, Wang and Khonsari 

[1] conducted bifurcation analysis to evaluate the stiffness effects of a flexible rotor supported by plain 

bearings, leading to a dynamic characteristics model of the rotor-bearing system. In [2], the influence 

of oil temperature on the instability limit threshold of this rotor-bearing system was studied and 

validated by several experimental tests to evaluate the behavior of hydrodynamic plain bearings. 

Additionally, Chasalevris Athanasios et al. [3] determined the additional harmonics affecting plain 

bearings using a magnetic geometry of these bearings, with experimental validation on 20% of the 

bearing radial clearance and 40% of other defects with critical speeds. Miraskari Mohammad et al. [4] 

delved into the influence of nonlinear dynamics to determine the types of bifurcations affecting flexible 

rotors supported by plain bearings, facilitating the development of models for Hopf-type bifurcations. In 

[5], a numerical model of rotor-bearing system bearings was proposed by introducing disturbances to 

the Reynolds lubrication equation model, which allowed for the analysis of eigenvalues and the output 

of bifurcation directions of this rotor-bearing system. Anastasopoulos Lysandros and Athanasios 

Chasalevris [6] studied the limit cycles of bifurcations in a rotor supported by plain bearings, enabling 

an analysis of the stability of the rotor-bearing system. 

Furthermore, Noah Sherif and Padmanabhan Sundararajan [7] investigated the importance of 

nonlinear effects on the dynamic behavior of rotating machines, especially fluid film bearings, 

conducting performance tests on a rotor system with multiple degrees of freedom. Youcef Mahroug et 

al. [8] studied the vibration behaviors of the bearings of a rotating machine, allowing the identification 

of defects using the ARMAX modeling structure. Ehrich Fredric in [9] explored subcritical chaotic 

phenomena in a rotor, observing super-harmonic responses, which led to the analysis of bifurcation 

models obtained at the entrance and exit of different chaotic areas. 

Several studies have examined monitoring and diagnostic systems for gas turbine failures, proposing 

various approaches. Biying Wu in [10] introduced an approach to analyze the dynamic performance of 

a gas turbine shaft, using artificial neural networks to enhance energy efficiency through in-depth 

optimization of the turbine's performance analysis. Jinyong Ju et al. in [11] suggested a strategy of 

nonlinear feedback control for the vibration of the main transmission system of the scraper conveyor 

using bifurcations, while estimating the influence of these bifurcations on the torsional instability of the 

transmission shaft. Zigang Li et al. in [12] conducted a nonlinear dynamic study of a rotor-bearing 

system, considering the effects of misalignment faults and analyzing nonlinear dynamic behaviors 

supported by sliding bearings. Several other works have been undertaken, exploring different 

bifurcation analyses of vibration and fault-tolerant control to monitor gas turbines in their design and 

implementation, as carried out by Ahmed Hafaifa et al. in [13], Choayb Djeddi et al. in [14], Arash 

Mohamadi et al. in [15], Avramov and Malyshev in [16], Avramov and Raimberdiyev in [17], Jafar 

Aghayari et al. in [18], Li Ma et al. in [19], Nicolas Noiray and Bruno Schuermans in [20], and Xiao-Ye 

Mao et al. in [21]. 
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Understanding the dynamic behavior of turbines is vital to account for undesirable effects on their 

operation and to enhance efficiency and yield by managing the complex nonlinearities of vibratory 

behavior under severe conditions, such as high rotational speed, temperature, and pressure. To 

achieve this, gas turbine operators must design robust and reliable monitoring systems to detect 

anomalies and their potentially dangerous developments in turbine components. In this context, this 

study proposes a bifurcation analysis approach based on modeling the MS5002B turbine rotor-bearing 

system, aiming to extend its operational life while reducing maintenance costs. This approach involves 

analyzing spectra of frequency, phase portraits, and Poincaré maps to describe the stability changes 

in the curves of solutions depicted in various bifurcation diagrams, all based on real-time 

measurements. 

2. The MS5002B gas turbine  

In pursuit of enhancing the energy efficiency of gas turbines used in the natural gas transportation 

sector, along with the integration of modern monitoring practices to ensure their continuous availability 

while preventing sudden failures, our focus in this study centers on the MS5002B gas turbine, as 

depicted in Figure 1, with its specifications provided in Table 1. This specific turbine is situated at the 

CS2/TFT gas compressor station, operated by SONATRACH, located approximately 1400 km 

southeast of Algeria and 540 km from the Wilaya of ILLIZI in southern Algeria. The MS5002B turbine 

is engineered to deliver substantial power under optimal operating conditions, effectively driving a 

centrifugal gas compressor. Notably, it comprises two mechanically independent rotors, as illustrated 

in Figure 2. The first rotor operates at speeds of up to 5100 rpm and is responsible for driving the axial 

compressor, featuring sixteen compression stages of the high-pressure HP turbine. Its primary 

function is to compress the air, which must be supplied to the combustion chambers under pressure. 

The second rotor is that of the low-pressure LP turbine, which is coupled mechanically to the 

centrifugal compressor. 

To meet the goals concerning the analysis of vibratory dynamics, we begin with the processing of 

information and data to detect vibration anomalies, as detailed in the following section. This process 

initiates with the modeling of the bearing-rotor system of the examined MS5002B turbine. 

Subsequently, bifurcation indicators are employed to pinpoint the stability endpoints, providing reliable 

solutions for monitoring instability phenomena. This approach is critical for preventing any degradation 

of the turbine, ensuring stable and secure operation while aligning with the desired operation 

parameters to extend its operational lifespan. The method facilitates the early detection of 

malfunctions and enables continuous monitoring to plan maintenance interventions. These 

interventions encompass leveraging a range of failure detection techniques and modern supervision 

methods to develop intelligent monitoring tools tailored to the specific requirements of the examined 

turbine. 

Multiple data series are collected through direct measurements of the rotating components of the 

machine shafts using various sensors positioned on these shafts. These sensors redundantly measure 

shaft movements and trigger immediate alarms in the event of a malfunction or a violation of vibration 

detection thresholds, as outlined in Table 2.  
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2.1. Modeling of MS5002B turbine bearing-rotor system  

Monitoring the vibrations of gas turbines involves tracking their behavior based on operational 

parameters. This type of monitoring is straightforward when dealing with simple vibratory signals. 

However, it becomes complex and impractical when these signals have diverse origins and dynamics, 

a common occurrence with rotating machines. These machines produce vibrations that manifest 

simultaneously in numerous locations across various elements, each exhibiting different types of 

vibrations. In this context, the bearing-rotor system, illustrated in Figure 3, is used to model the 

dynamic behavior of vibrations in the MS5002B turbine. This system comprises two journal bearings 

with oil film, one for the axial compressor and one for the turbine. 

The structure of the MS5002B turbine rotor-bearing system, examined in this study, comprises two 

plain bearings (journal bearings) for supporting the HP and LP rotors, along with a thrust bearing, as 

outlined in Table 3. The thrust bearing serves to maintain the axial position of the rotor-stator and 

support the axial thrust loads transmitted by the rotor. 

The analysis of the rotor-bearing system's behavior focuses on the radial vibrations of the high-

pressure HP turbine rotor. This analysis helps determine the significant impacts of these vibrations on 

the overall operation of the turbine. It also involves a thorough examination of the behaviors of the 

plain bearings, given their critical role in managing and mitigating the radial vibrations of the HP rotor. 

It's important to note that these bearings themselves can be a source of radial vibrations, particularly 

those generated within the HP rotor. These vibrations can have significant consequences on the 

efficiency, durability, and overall performance of the turbine. They can lead to premature wear of 

components and compromise system stability, resulting in substantial maintenance costs. 

In practice, vibration monitoring is a highly intricate task that necessitates robust and reliable turbine 

operating data. This data ensures the effective protection of the rotating machine by automatically 

triggering shutdown or generating alarms before severe damage occurs to its components. The 

vibrations recorded in the examined MS5002B turbine bearing-rotor system can be attributed to 

various forces and non-linear effects of the oil film. These effects occur when the fluid film is generated 

by the relative movement of two surfaces, ensuring no contact between the shaft and the bearings. 

This arrangement is characteristic of hydrodynamic bearings, which serve as supporting elements for 

turbine rotors. They guide rotating shafts, boasting a notably high load capacity, where shaft rotation 

generates viscous damping and rigidity within the bearing, as depicted in Figure 4. 

The nonlinear model of the hydrodynamic forces under the hypothesis of the short bearing, i.e., the 

ratio of its length to its diameter (L/D) has a low value ≤0.7, where the calculations of this type of 

bearing are based on the made that the circumferential pressure gradient is negligible, using the 

Reynolds equation the model of the hydrodynamic forces in the Cartesian frame of reference is given 

as follows [13, 22, 23, 24]:  

   sincoscossin23
2

xyxy
z

p
h

zL

R

























                                 (1) 
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Where R  and L  are respectively are the radius and the length of the bearing, 
L

Z
z   is the 

dimensionless axial displacement with ; 
2

1

2

1
 z ,
















bC

R
w

P
p

6

 is the dimensionless pressure 

of the oil film with bC  is the radial clearance of the bearing, x  and y  are dimensionless horizontal 

and vertical displacements, 
bC

H
h   is the dimensionless thickness of the oil film with 

 sincos1 yxh  . 

Integrating the Reynolds equation (1) gives the dimensionless pressure distribution of the oil film as 

follows [25, 26, 27, 28]:  
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As well as the total nonlinear forces of the oil film are calculated by the formulation given in following  

[13, 29, 30, 31]: 
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Substituting equation (2) into equation (3) gives the dimensionless equations of oil film forces 

expressed as follows [13, 28, 29, 32]:  
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 With:  
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 The resulting calculation of integration of equation (4) is written as follows [13, 27]:  

3 1

2 2

2( 2 ) 2( 2 )

2( 2 ) 2( 2 )

x

y

f x y I y x I

f x y I y x I

    

    
                                               (6) 

 With: 
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By introducing ( , , ) ( , , )T x y g x y z d

 



 


   with 
1

( , , )
1 cos sin

g x y z
x y 


 

 and using 

Leibniz's integral rule, the variables 1I , 2I  and 3I  are calculated as follows [33-34]: 
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   (8) 

Then, substituting equation (8) into equation (6), the forces xf  and yf  are expressed as follows [35, 

36, 37-38]: 

   
1
22 2

2 2

2 2 3 ( , , ) ( , , )sin 2 ( , , )cos
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x

y
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        (9) 

Where: 
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With   is the Sommerfeld number,   is the dynamic viscosity, while xf  and yf  are the 

dimensionless nonlinear forces of the oil film. 

2.2. Governing equations of the bearing-rotor system of the MS5002B turbine 

The dynamic equations of a bearing-rotor system of a gas turbine are established by neglecting the 

shear strain and the gyroscopic torque to demonstrate the effect of the oil film force as follows:  

       

1

1

3

1 1 1 1 1 2

1 1 1 1 1 2 1

2

2 2 2 1 2 1 2 2 3 2

2

2 2 2 1 2 1 2 2 3 2 2

3 3 3 2 3 2 3 3 4

3 3 3 2 3

( )

( )

( ) ( ) cos( )

( ) ( ) sin( )

( ) ( )

(

X

Y

X

m X cX k X X F

m Y cY k Y Y F m g

m X cX k X X k X X m r t

m Y cY k Y Y k Y Y m r t m g

m X cX k X X k X X F

m Y cY k Y Y
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                (11) 

Where g  is the acceleration of gravity, w  is the angular velocity of the rotor and 1XF , 1YF , 3XF  

and 3YF  are the components of the nonlinear forces of the oil film in the plain bearings following  OX, 

OY, r   is the eccentricity of the rotor, 1k , 2k , 3k  are the stiffness matrix of the rotor, c  is the 

damping of the system, iX  and iY  are the horizontal and vertical displacements, 1m  and 3m  are the 

concentrated masses of the left and right bearings respectively, 2m  and 4m  are the concentrated 

masses of the compressor and the turbine, respectively. 

To ease the calculation, the dimensionless transformations are given as follows: 

, , ,i i
i i

p p p

X Yr
t e x y

C C C
                                                      (12) 

With: 
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2 2
2

2 2
,

d d d d

dt d dt d
 

 
                                                            (13) 

Which give:  

2 2

2 2
, , ,

dx dy d x d y
x y x y

d d d d   
                                                         (14) 

The substitution of the force of the oil film given by equation (4) in equation (11) written in the following 

dimensionless form: 

1
1 1 1 2 12 2
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( ) cos( )
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                               (15) 

To solve the nonlinear equations of the system of equation (15), these eight second order equations 

are decomposed into sixteen first order equations, with the turbine bearing-rotor system model state 

variables of the MS5002B turbine are introduced as follows:  

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

x x x x x x x x x x x x x x x x x

x x x x x x x x y y y y y y y y



       
                         (16) 

 Then the equations of motion become: 
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                            (17) 

This representation of the system of equations (17) is of the form ( , )x f x   , with the steady-state 

equilibrium points sx  are represented in the phase space as the solutions of the equilibrium states, 

i.e., the solutions of the equation ( , ) 0sf x   . 

For the stability analysis of the MS5002B turbine bearing-rotor system, the stability of the fixed points 

sx  figures out the equilibrium points of the turbine system formally represented by equations (17). 

Hence, the problem that arises is whether the fixed points are stable or not. Suppose that the system 

of equations (17) has a fixed point at sxx  , the linearization of this system of equations (17) around 

this state of equilibrium, gives: 

 2( ) ( ) .( ) ( )
ss x s sf x f x J x x O x x                                           (18) 

Where J  is the Jacobian matrix of  f  evaluated in sx , written by: 



 11 

ijJ J     with  
i

ij

j

f
J

x





                                                          (19) 

Equation (18) can be transformed into the following form: 

( )
.( )

s

s
x s

d x x
J x x

dt


                                                        (20) 

This equation (20) is linear with constant coefficients, its solutions are a sum of exponentials 

expressed as follows: 

.exp( )s i i

i

x x A t                                                    (21) 

Where i  are the eigenvalues of the problem, knowing that i  are solutions of the following system: 

det( . ) 0J I                                                      (22) 

Where I  is the identity matrix and det is the determinant.  

The solutions i  are real or imaginary, so the stability of the equilibrium state depends on the 

eigenvalues. We can get two following cases:  

 If for every  ni ;1  thing,   0ieR   the fixed point sx  is stable, 

 If it exists  nj ;1 ,   0ieR   the fixed point sx  is unstable. 

4. Vibrations’ bifurcation behavior of MS5002B turbine bearing-rotor system 

Modeling of vibrations bifurcation behavior of the MS5002B turbine bearing-rotor system is done in this 

section, considering the effects of nonlinear forces of the oil film, based on the observed turbine 

operating state, under de different rotational speed of the rotors. As well as in the presence of 

instabilities generated by the phenomenon of unbalance on the shaft lines of turbine bearing-rotor 

system. This nonlinear dynamic will be modeled using the bifurcation diagram, the phase portrait, the 

Poincaré map and the frequency spectrum, in order to figure out the stable operating zones of the 

studied turbine and to guarantee a proper operation. Indeed, the theory of bifurcations aims to 

describe the changes and variations of the points of stability, verifying the equilibrium equations to 

represent the real behavior of the system. The nonlinear system dynamics is given by:  

( , )x f x                                                                      (23) 

 where 
Nx   is the state vector, f  is the nonlinear function and   is the control parameter vector. 

When the control parameter   is variable, we say that a value c  is a critical bifurcation value, if the 

vector field  cxf ,  is not equivalent to  ,xf  whatever   is in the neighborhood of c . However, 

the bifurcation diagram summarizes all the essential information of the nonlinear dynamic system, 
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which is the case of the studied turbine and helps to understand how its behavior evolves and is a 

useful means to analyze their stability.  

Numerically, we can calculate the bifurcations which connects the equilibriums to the periodic motion 

is the Hopf bifurcation. The loss of stability at the Hopf bifurcation occurs when a pair of conjugate 

eigenvalues cross the imaginary axis at the points cw , where the bifurcation parameter reaches the 

critical value c . This implies that the bifurcation condition 0Re 2,1   is satisfied and 02,1 lm , 

this case corresponds to the Hopf bifurcation, also call the Poincaré-Andronov-Hopf bifurcation, this 

type of bifurcation connects the equilibriums to the periodic oscillation at the well-determined 

bifurcation point. From where, the study of the bifurcation of Hopf rests on the following assumptions 

[4,5]: 

1. Suppose that the system of ordinary differential equations ( , )x f x   has a fixed point 

( )sx x  ,  

2. The Jacobian matrix ( ( ), ) ( ( ), ) ;   , 1,...,x s i j sJ x f x x i j N        has a pair of 

complex conjugate eigenvalues ( ) ( )i    , such as when; 

0, ( ) 0, ( ) 0c c c         such that c  is the critical value of   and the other 

eigenvalues ( 2n ) have negative real parts,  

3. The derivative of 
( )

0
 







 when c  , 

4. The function f  is analytical in x  and   in the neighborhood of ( , ) ( , )s cx x  . 

If hypothesis (2) holds, then hypothesis (3) implies that the linear stability of the fixed point )(sx  will 

be lost when   crosses to c . That, allows to describe the model of system by bifurcation of Hopf by 

the equation of Stuart – Landau, given by: 

2

0 0( )   , 0 , L 0z j z Lz z                                                            (24) 

Hence z  is the instantaneous complex amplitude and L  is the first exponent of the Lyapunov 

function, if 0L , the bifurcation is subcritical and the unstable cycle and the stable focus exist for 

0  and only one unstable focus exists for 0  and if 0L , the bifurcation is supercritical and 

the cycle exists and is stable for 0  and the focus is stable for 0  and unstable for 0 . 

To study this equation (24), the variable z  is written in form 
jz re  , where the normal form is 

written in the polar coordinate system  ,r  and after the calculations we get:  

3

0

r r Lr

 

  




                                                                         (25) 
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where r z  and  arg( )z  . 

Hence, the Hopf bifurcation is the combination of a fork bifurcation r  and a rotation   at constant 

angular speed, from the equation of stationary amplitudes, i.e. 
3 0r Lr   , we get values of d 

amplitude for equilibrium 0fr   and for the limit cycle 
2

cr L  . Therefore, the limit cycle exists if 

0L   and the quantity 0w  gives its period 02T   . The eigenvalues result from setting up the 

determinant D  equal to zero, at the equilibriums points determined by:  

  2det ( ) ( 3 ) 0
ii rD J t I Lr                                               (26) 

Therefore, the eigenvalues are obtained as follows: 

2

f

c

 

 




 
                                                                        (27) 

The numerical results of the developed model show that as the rotational speed increases, the 

bearing-rotor system undergoes a variety of nonlinear phenomena and complex dynamic behaviors, 

including periodic, quasi-periodic and multi-periodic motions. One of the main causes of unstable rotor 

movement is the effect of the non-linear force of the oil film. The study of their characteristic is 

therefore a prerequisite for improving the dynamic stability of the system. The obtained results are a 

useful reference source for the design and control of such a bearing-rotor system of the examined gas 

turbine.  

The application of Hopf's bifurcation theory to the MS5002B turbine bearing-rotor system is based on 

the study of dynamic behavior given in the equation system of (17), this formulation having the proper 

form ( , )x f x    for the application of Hopf's bifurcation theory. Also, a stationary equilibrium 

position sx  is determined for the rotational speed w , which is considered the control parameter  , 

when all other system parameters are assumed to be set. So according to Hopf's bifurcation theory, if 

the parameter w  becomes greater than a critical value cw , implying that there is a stationary point sx  

will lose its linear stability. 

To perform this Hopf bifurcation analysis, firstly, the function f   of the system of equation (17) is used 

with a Taylor series around the equilibrium point sx , as follows: 

2 3
2 3

2 3

1 1
( , ) ( , ) ( , )( ) ( , )( ) ( , )( ) ....

2! 3!
s s s s s s s

f f f
f x f x x x x x x x x x x

x x x
    

  
       

  
 

(28) 
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Hence the term ( , ) 0sf x    is used to determine the equilibrium point, the term ( , )sf x x    used 

to determine dynamic performance through eigenvalue analysis, the terms 
2 2 ( , )sf x x    and 

3 3 ( , )sf x x    are used to determine the stability of periodic solutions. 

In this sense, the nonlinear dynamic behavior of the MS5002B gas turbine bearing-rotor system at 

high pressure is decided using this proposed analytical model, to obtain the nonlinear dynamic 

response of displacement and speed of rotations of the studied turbine bearing-rotor system, with 

calculations and numerical integrations using the bifurcation diagram, phase portrait, Poincaré map 

and frequency spectrum. This transforms the resolution of the nonlinear problem into that of a 

succession of a linear system, which is highlighted in the following section of results of investigations 

and application. 

5. Investigations and analysis of the obtained results 

In this section, we present the investigations and analysis of the obtained results to highlight the 

experimental application of bifurcation studies to the examined MS5002B gas turbine. First, we model 

the turbine bearing-rotor system parameters and initialize them to characterize the nonlinear dynamics 

of this system. We model the operating zones in periodic and quasi-periodic regimes to mitigate 

instability effects. Then, we present the different dynamic behaviors of the turbine bearing-rotor system 

using bifurcation diagram formalisms, phase portrait, Poincaré map, and frequency spectrum. We 

present the most meaningful results to show the solution of bifurcation problems adapted for the 

examined gas turbine MS5002B. 

For this work, we use data acquisition equipment of Bently Nevada BN3500 type. It consists of a 

vibration sensor at bearing No. 1, a magnetic sensor (Magnetic Speed Pickup) to measure the speed 

of rotation, and a thermocouple sensor to measure the temperature variation of the oil film in bearing 

No. 1. The positions of various sensors are shown in Figures 5, 6.A, and 6.B. 

5.1. Parameters’ modeling of the examined bearing-rotor system 

In this section of work, the modeling parameters of the examined MS5002B turbine bearing-rotor 

system are determined, to characterize the nonlinear dynamics of this system using three bifurcation 

analysis techniques using frequency spectra, the phase portraits and the Poincaré maps. These three 

bifurcation diagrams are chosen to study the nonlinear dynamic behaviors of the studied turbine 

bearing-rotor system, with is a system representation made from the various input / output turbine 

operating data MS5002B. However, the choice of variables describing the behavior of the bearing-

rotor system and the phenomena of instability of this system are considered, as a function of their 

vibratory influence on this rotating machine. Hence, series of turbine operating data corresponding to 

the different rotational speed variations of the bearing-rotor system is used to analyze the different 

behaviors affecting the turbine operating areas. Where, 400 cycles of turbine bearing-rotor response 

data are used, with 139 first cycles of transient bearing-rotor response excluded to eliminate turbine 

starting impacts and 261 cycles of bearing-rotor response for rpm permanent are exploited, to 

reproduce the vibratory behaviors of the turbine, making it possible to determine the optimal speed 
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with the purpose to operate the turbine in the established stable zone. For this, the initial values 

adopted for the gas turbine bearing-rotor system model MS5002B are given by Table 4, with a 

numerical integration step equal to 36/ . 

In this section, we present the investigations and analysis of the obtained results to highlight the 

experimental application of bifurcation studies to the MS5002B gas turbine. First, we model the turbine 

bearing-rotor system parameters and initialize them to characterize the nonlinear dynamics of this 

system. We model the operating zones in periodic and quasi-periodic regimes to reduce instability 

effects. Then, we present the different dynamic behaviors of the turbine bearing-rotor system using 

three bifurcation analysis techniques: frequency spectra, phase portraits, and Poincaré maps. We 

base the system representation on various input/output turbine operating data from the MS5002B. 

The choice of variables to describe the behavior of the bearing-rotor system and the instability 

phenomena is made considering their vibratory influence on the rotating machine. We employ a series 

of turbine operating data corresponding to variations in the rotational speed of the bearing-rotor 

system to analyze the different behaviors affecting the turbine within its operational zones. Specifically, 

we use 400 cycles of turbine bearing-rotor response data. The first 139 cycles of transient bearing-

rotor response are excluded to eliminate the impacts of turbine starting, leaving us with 261 cycles of 

bearing-rotor response for maintaining a constant RPM. This data enables us to replicate the vibratory 

behaviors of the turbine and determine the optimal speed for operating the turbine within the 

established stable zone. 

The initial values adopted for the gas turbine bearing-rotor system model MS5002B are outlined in 

Table 4, with a numerical integration step equal to 36/ , are given by: 
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Practically, the bifurcation diagram is a graphical representation where the x-axis signifies the 

bifurcation parameter undergoing alteration (in our case, the angular velocity ω), and the y-axis 

depicts the observed system behavior. Different types of behavior, such as stable points, periodic 

orbits, and chaotic behavior, will later be presented in this section through distinctive patterns or 

structures in the diagram. 

The variations in the different bifurcation diagrams, presented in Figures 7, 8 are plotted as a function 

of the angular speed of rotation of the turbine rotor. These diagrams reveal the areas of instability 

linked to various turbine operating speed models. 

5.2. Dynamic behavior of the examined turbine bearing-rotor system 

To investigate the dynamic behaviors of the bearing-rotor system within various ranges of angular 

speed variations, a data acquisition system has been established on the examined turbine. This 

system comprises different sensors strategically positioned on the bearing-rotor system to observe the 

movements of the system as it operates during turbine operation. 
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However, Figure 9 shows the periodic motion of the turbine center at 98   rad/s with double period 

time 02T , waveform in the horizontal direction of 4x , as shown in Figure 9.A, for this periodic motion. 

Hence, in the frequency spectrum of Figure 9.B, there are two discrete frequency components 

corresponding to the rotational speed rf
2

1
 and rf  is a limited circle in the phase portrait of Figure 

9.C, where the trajectory of center of the turbine is regular given by the two discrete points in the 

Poincaré map of Figure 9.D, which implies that this movement is stable with double period 

42 0  TT . 

With the increase of the turbine angular speed in the interval 98 200   rad/s, there is an 

appearance of the quasi-periodic motion in the center of the turbine and in the center of the rotor in 

bearing N°2 as shown in Figure 10 at the angular speed of 110  rad/s. Hence, Figure 10 shows 

the quasi-periodic motion of the center of the time waveform turbine in the direction 4x  as shown in 

Figure 10.A at the critical speed 110   rad/s, there are two components discrete frequencies with 

vibration amplitudes in the order of 0.33 and 0.39 as shown in Figure 10.B, corresponding to the 

speed of rotation rf  and rf
4

9
, with a risk of increased amplitude of turbine rotor vibrations. As well 

as several vibration modes can appear during turbine operation because the trajectories are very 

disordered in the limit circles in the phase portrait of Figure 10.C. Moreover, the projections of the 

Poincaré section of Figure 10.D are of the closed curve type, indicating the quasi-periodic nature of 

the movement of the turbine bearing-rotor system, which can be interpreted by the strong presence of 

the force effects of the non-linear oil film. 

And when the turbine angular speed varied in the interval 200 555   rad/s, the dynamic motion 

of bearing-rotor system changes from a quasi-periodic motion to a periodic motion. In this range of 

rotation, the results obtained from periodic movement from turbine center at 300   rad/s with 0NT  

periods as given in Figure 11 of a time waveform 4x  shown in Figure 11.A, shows that there are two 

dynamics discrete frequency vibrators corresponding to the speed of rotation rf
9

4
 and rf   with the 

frequencies 0.27 and 0.06 is a negligible dynamic with a frequency on the order of 0.01, as shown in 

Figure 11.B. This causes the existence of a limited circle in the phase portrait presented in Figure 

11.C, where the trajectory is regular, with the presence N  of discrete points in the Poincaré maps of 

Figure 11.D, which proves that the movement is periodic with a period of 20  NTNT . 

To recognize the dynamic behavior of compressor center over an interval of angular speed 

1 555   rad/s, Figure 12 shows the evolution of their periodic motion at 10  rad/s with four 

periods 04T , where Figure 12.A shows the waveform temporal movement of 2x , Figure 12.B shows 

the variation in frequency spectrum of this movement, Figure 12.C shows the phase portrait of 2y  as 

function of 2x  and Figure 12.D shows their projections according to the Poincaré map. However, a 
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bifurcation diagram was obtained on the interval 1 22   rad/s, where the movement is periodic for 

four periods 84 0  TT , in the case of 10   rad/s a limit cycle appears as the critical value of 

stability, in the phase portrait with trajectory regular and four discrete points in the Poincaré map, for 

these turbine rotor rotation amplitude values. 

The results obtained in Figure 13 show the quasi-periodic movement of the compressor center at the 

critical speed 110   rad/s with temporal integration of this quasi-periodic movement and which 

indicates the presence of partial contacts with the turbine rotor due to the effects of unbalance and the 

force effects of the oil film. This implies the rapid increase in the amplitudes of vibrations, as shown in 

Figure 13.B of the time-wave motion frequency spectrum of 2x  as given in Figure 13.A, which can 

reach up to the amplitude of 3.4. Hence, the phase portrait trajectories of 2y  as a function of 2x  

given in Figure 13.C are disordered with projections on the map of the Poincaré section of Figure 13.D 

of closed curve type. These results appear to be an advance for practical measurements of these type 

of gas turbine vibration modes. 

For speed variations in 200 555   rad/s, the periodic motion from compressor center at 

300  with N periods 0NT  is shown in Figure 14, with the data time wave motion 2x  given in 

Figure 14.A and the frequency spectrum of this movement given in Figure 14.B, after this speed the 

movement of the rotor is no longer quasi-periodic and passes to a periodic movement. In addition, this 

return to this periodic regime is established by determining a stable limit cycle at the value of this 

critical speed, what is shown on the phase portrait of 2y  as a function of 2x  given in Figure 14.C and 

projected on their Poincaré map in the Figure 14.D. 

The actual operating data of the examined gas turbine MS5002B in this work is designed to measure 

the dynamic characteristics of the bearing-rotor system under a series of conditions, such as a full set 

of different operating processes. Hence, the numerical results of the modeling made are validated by 

the experimental data, to monitor the dynamic behavior of the bearing-rotor system. Figure 15 shows 

the variation of movement of the center of the rotor in the bearings N ° 1 in parallel with the variation of 

the angular speed of the rotor HP and the temperature of the film of oil, these variations break down 

into two phases, phase of starting and maximum operating phase. Where, the vibrations evolve 

according to the angular velocity and the temperature of the oil film. Knowing that, the variation of the 

film temperature greatly affects the viscosity of the oil and on the other hand the strength of the oil film 

is highly dependent on the viscosity of the oil such as a decrease in pressure or an increase oil film 

temperature causes a decrease in oil film viscosity and strength. 

Also, it is clear that when the angular velocity is low such as ω ≤55 rad/s and t ≤70 s, only low 

amplitude synchronous vibrations appear. This synchronous movement is caused by the inertial force 

of the unbalance of the HP rotor. When the angular velocity increases further so that 55 rad/s < ω < 

210 rad/s and 70 s < t < 695 s, an oil whirl appears, which results in an increase in amplitude of 

vibrations and a decrease in the temperature of the oil film in 55 rad/s <ω ≤57 rad/s and 77 s < t ≤97 s 

following a decrease in the amplitude of vibrations and increase in the temperature of the oil film in 57 
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rad/s <ω <210 rad/s and 97 s < t <695 s. So, in this range of 55 rad/s <ω <210 rad/s the system will 

vibrate strongly and become unstable, oil swirl usually occurs when there is a change in oil properties 

such as temperature and oil viscosity. It is a mechanism for converting rotational energy into 

vibrational energy through the force of the oil film. 

As the angular velocity increases so that 210 rad/s ≤ ω ≤ 555 rad/s and 695 s ≤ t ≤ 2445 s i.e., until the 

maximum operating phase, the vortex of oil disappears. At this range, the quenching phenomenon 

occurs because the increasing synchronous vibrations suppress the oil swirl, and the system becomes 

more stable. As well as the vibration amplitude caused by oil swirl is greater than that of synchronous 

vibration. So, based on the obtained experimental results through this study, we can conclude that 

there is an agreement between the experimental results and the numerical results of the developed 

model with a relative deviation of ≈ 1 %. 

6. Conclusion 

This research has emphasized the experimental exploration of vibration bifurcation diagrams for the 

MS5002B turbine bearing-rotor system. The study has introduced reliable models characterizing the 

vibration bifurcation behaviors affecting the examined turbine, thereby shedding light on the areas of 

stable operation. The investigation considered undesirable effects contributing to the instability of the 

bearing-rotor system, such as imbalance, non-linear film forces, rotor contacts, rotor misalignment, 

and other sources of vibration. 

Within this context, the study applied bifurcation diagram analysis to understand vibratory phenomena 

and monitor the operational state of the MS5002B. This involved an examination of the nonlinear 

dynamics exhibited by the bearing-rotor system. Concepts related to bifurcation theory, including 

phase portraits, various Poincaré maps, and frequency spectra, were employed to gain better insights 

into the destabilizing effects impacting the examined turbine. This allowed the utilization of digital 

advancements to effectively employ advanced tools for analyzing complex instability phenomena and 

ensuring the stable and safe operation of the turbine. 

The results obtained from various tests on the bearing-rotor system of the MS5002B turbine 

demonstrated the robustness of the bifurcation models developed for variable turbine speeds. 

Furthermore, this work underscored the potential and performance of bifurcation tracking algorithms in 

the analysis of complex dynamic behaviors in gas turbines. These algorithms have proven effective in 

detecting harmonic resonances in the spectra of vibratory frequencies, serving as a valuable tool for 

developing systems that support the monitoring and diagnosis of gas turbines. This, in turn, ensures 

equipment sustainability by averting unexpected failures. The use of vibration analysis in conjunction 

with bifurcation indicators aids in the detection of limit points with periodic, quasi-periodic, or multi-

periodic solutions, making it possible to identify vibration faults and track their changes over time, thus 

preventing the degradation of the studied turbine. 
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Figure and table captions 

Figure 1: MS5002B gas turbine installed in the CS2/TFT gas compressor station in southeastern 

Algeria.  

Figure 2: Operational structure of the MS5002B gas turbine.  

Figure 3: Structure of studied gas turbine rotor-bearing system 

Figure 4: Representation of pressure distribution of the oil film  

Figure 5: Position of the vibration sensor 

Figure 6.A: Position of the magnetic pickup (Magnetic Speed Pickup) 

Figure 6.B: Position of the thermocouple sensor 

Figure 7: Bifurcation diagram of the center of the rotor in bearing N°2 

Figure 8: Bifurcation diagram of the turbine center 

Figure 9: Periodic motion of the turbine center at 98w  rad/s with double period 02T  

Figure 10: Quasi-periodic movement of turbine center at 110w  rad/s 

Figure 11: Periodic movement of turbine center at 300w  rad/s with 0NT  periods 

Figure 12: Periodic movement of compressor center at 10w  rad/s with four periods 04T  

Figure 13: Quasi-periodic movement of compressor center at 110w  rad/s 

Figure 14: Periodic movement of compressor center at 300w  rad/s with  0NT  periods  

Figure 15: Dynamic behavior of the bearing-rotor system in bearing N°1: (a) rotor speed HP, (b) 

movement of the center of the rotor, (c) temperature of the oil film 
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Figure 1: MS5002B gas turbine installed in the CS2/TFT gas compressor station in southeastern 

Algeria.  

 

Figure 2: Operational structure of the MS5002B gas turbine.  
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O1 and O3  are respectively the geometric centers of the left and right bearings 

O2 and O4 are the geometric centers of the compressor and the turbine 

k1, k2 and k3 are the stiffness matrix of the shaft 

 
 

Figure 3: Structure of studied gas turbine rotor-bearing system. 

 

Figure 4: Representation of pressure distribution of the oil film 

 

Figure 5: Position of the vibration sensor 
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Figure 6.A: Position of the magnetic pickup (Magnetic Speed Pickup). 

 

Figure 6.B: Position of the thermocouple sensor. 

  

Figure 7: Bifurcation diagram of the compressor center Figure 8: Bifurcation diagram of the turbine center 
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Figure 9.A: Time waveform of 4x  Figure 9.B: Frequency spectrum of motion of 4x  

  

Figure 9.C: Phase portrait of 4y  as function 4x   Figure 9.D: Poincaré map of 4y  as a function 4x  

Figure 9: Periodic motion of the turbine center at 98w  rad/s with double period 02T  
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Figure 10.A: Time waveform of 4x  Figure 10.B: Frequency spectrum of motion of 4x  

  

Figure 10.C: Phase portrait of 4y  as function 4x  Figure 10.D: Poincaré map of 4y  as a function 4x  

Figure 10: Quasi-periodic movement of turbine center at 110w  rad/s 
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Figure 11.A: Time waveform of 4x  Figure 11.B: Frequency spectrum of motion of 4x  

  

Figure 11.C: Phase portrait of 4y  as function 4x  Figure 11.D: Poincaré map of 4y  as a function 4x  

Figure 11: Periodic movement of turbine center at 300w  rad/s with 0NT  periods 
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Figure 12.A: Time waveform of 2x  Figure 12.B: Frequency spectrum of motion of 2x  

  

Figure 12.C: Phase portrait of 2y  as function 2x  Figure 12.D: Poincaré map of 2y  as a function 2x  

Figure 12: Periodic movement of compressor center at 10w  rad/s with four periods 04T  
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Figure 13.A: Time waveform of 2x  Figure 13.B: Frequency spectrum of motion of 2x  

  

Figure 13.C: Phase portrait of 2y  as function 2x  Figure 13.D: Poincaré map of 2y  as a function 2x  

Figure 13: Quasi-periodic movement of compressor center at 110w  rad/s  
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Figure 14.A: Time waveform of 2x  Figure 14.B: Frequency spectrum of motion of 2x  

  

Figure 14.C: Phase portrait of 2y  as function  2x  Figure 14.D: Poincaré map of 2y  as of function 2x  

Figure 14: Periodic movement of compressor center at 300w  rad/s with  0NT  periods 
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Figure 15: Dynamic behavior of the bearing-rotor system in bearing N°1: (a) rotor speed HP, (b) 

movement of the center of the rotor, (c) temperature of the oil film 

Table 1. Specifications of the MS5002B gas turbine  

Parameters Values 

Cycle Simple 

Pressure ratio 6 – 8 

Exhaust temperature 963 °F 

Exhaust flow 274.1 Ibs/sec 

Number of turbine stages 02  

Rated power 38000 HP 

Heat rate 8816 btu/hp-h 

Turbine efficiency 28.8 % 

Shaft speed 5100 rpm HP and 4903 rpm LP 

Table 2. Vibrations alarms in the MS5002B gas turbine 

 Alarm level Danger level 

Bearing N° 1  12.7 mm/s 25.4 mm/s 

Bearing N° 4  12.7 mm/s 25.4 mm/s 

Table 3. Type of MS5002B turbine bearings 

Bearing N° Class Type 

1 

Journal Elliptical 

Thrust (active side) Tilting pad (self-equalizing) 

Thrust (inactive side) Tapered land 

2 Journal Elliptical 

3 Journal Tilting pad 

4 
Journal Tilting pad 

Thrust (active side) Tilting pad (self-equalizing) 
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Thrust (inactive side) Tilting pad (non-equalizing) 

Table 4. Parameters of the studied turbine bearing-rotor system  

Parameters Values Units 

Concentrated mass of left-hand bearings N°1 1m  

Concentrated mass of the compressor 2m  

Concentrated mass of right-hand bearings N°2 3m  

Concentrated mass of turbine 4m  

50 
6480 

50 
200 

[kg] 

Rotor stiffness k  8×10
6
 [N/m] 

Rotor damping c  500 [N.s/m] 

Ray R  

Length L  

Radial clearance of the bearing bC    

101.89 
122.27 

0.2 
[mm] 

Rotor eccentricity r  0.06 [mm] 

Dynamic viscosity   0.03 [Pa.s] 
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