References:
1.Shah, J., Wiken, J., Williams, B., et al. “Improvedhuman-robot team performance using chaski, ahuman-inspired plan execution system”,In Proceedings of the 6th International Conference onHuman-Robot Interaction, pp. 29-36 (2011). https://doi.org/10.1145/1957656.1957668.
2.Díaz-Boladeras, M., Paillacho, D., Angulo, C., et al.“Evaluating group-robot interaction in crowded publicspaces: A week-long exploratory study in the wildwith a humanoid robot guiding visitors through ascience museum”, International Journal ofHumanoid Robotics, 12(04),1550022 (2015).https://doi.org/10.1142/S021984361550022X.
3.Karar, A.S., Said, S., and Beyrouth, T. “Pepperhumanoid robot as a service robot: A customerapproach”, In 2019 3rd International Conference onBio-Engineering for Smart Technologies(BioSMART), pp. 1-4 (2019).https://doi.org/10.1109/BIOSMART.2019.8734250.
4.Lee, M.K., Forlizzi, J., Rybski, P.E., et al. “Thesnackbot: documenting the design of a robot for long-term human-robot interaction”, In Proceedings of the4th ACM/IEEE International Conference on Human Robot Interaction, pp. 7-14 (2009). https://doi.org/10.1145/1514095.1514100.
5.Mišeikis, J., Caroni, P., Duchamp, P., et al. “Lio-apersonal robot assistant for human-robot interactionand care applications”, IEEE Robotics andAutomation Letters, 5, pp. 4 (2020).https://doi.org/10.1109/LRA.2020.3007462.
6.Graf, B. and Eckstein, J. “Service robots andautomation for the disabled and nursing home care”,In Springer Handbook of Automation, Cham: Springer International Publishing, pp. 1331-1347 (2023). https://doi.org/10.1007/978-3-030-96729-1-62.
7.Morris, K.J., Samonin, V., Baltes, J., et al. “A robustinteractive entertainment robot for robot magicperformances”, Applied Intelligence, 49, pp. 3834-3844 (2019). https://doi.org/10.1007/s10489-019-01565-7.
8.Retto, J. “Sophia, first citizen robot of the world”,Univ. Nac. Mayor San Marcos, (2017).https://doi.org/10.26619/16477251.DT0122.4.
9.Ambrose, R.O. “Development and deployment ofrobonaut 2 to the international space station”, In ICRA2011 (International Conference on Robotics andAutomation (2011).https://doi.org/10.1109/ICRA.2011.5979830.
10.Dwarakanath, N. “Gaganyaan mission: meetVyommitra, the talking human robot that ISRO willsend to space”, India Today, 22, p. 22 (2020).https://doi.org/10.2514/6.2023-2222.
11.Rastegarpanah, A., Aflakian, A., and Stolkin, R.“Improving the manipulability of a redundant armusing decoupled hybrid visual servoing”, AppliedSciences, 11,p. 23 (2021).https://doi.org/10.3390/app112311566.
12.Neha, E. and Shrivastava, Y. “Analysis ofmanipulability for a robotic hand using statisticalapproach”, Materials Today: Proceedings, 43, pp.164-168 (2021).https://doi.org/10.1016/j.matpr.2020.11.397.
13.Patel, S. and Sobh, T. “Task based synthesis of serialmanipulators”, Journal of Advanced Research, 6(3),pp. 479-492 (2015).https://doi.org/10.1016/j.jare.2014.12.006.
14.Freddi, A., Longhi, S., Monteriù, A., et al.“Redundancy analysis of cooperative dual-armmanipulators”, Int. J. Adv. Robot. Syst., 13(5), pp. 1–14 (2016).https://doi.org/10.1177/1729881416657754.
15.Chan, T.F. and Dubey, R.V. “A weighted least-normsolu-tion based scheme for avoiding joint limits forredundant joint manipulators”, IEEE Transactions onRobotics and Automation, 11(2), pp. 286-92 (1995). https://doi.org/ 10.1109/70.370511.
16.Ferreira, N.F. and Machado, J.T. “Manipulabilityanalysis of two-arm robotic systems”, 4th IEEE Int.Conf. Intell. Eng. Syst., pp. 101–109 (2000).https://doi.org/10.1311/252951895.
17.Zhang, S., Ouyang, B., He, X., et al. “Face trackingstrategy based on manipulability of a 7-DOF robot armand head motion intention ellipsoids”, IEEE Int. Conf.Real-Time Comput. Robot, pp. 290–295 (2022). https://doi.org/ 10.1109/RCAR54675.2022.9872298.
18.Chiriatti, G., Bottiglione, A., and Palmieri, G.“Manipulability optimization of a rehabilitativecollaborative robotic system”, Machines, 10(6), pp. 1–11 (2022).https://doi.org/10.3390/machines10060452.
19.Choi, Y.S., Rhee, I., Hoang, P.T., et al. “Simpledesired manipulability ellipsoid with velocity andforce for control of redundant manipulator”, J. Mech.Sci. Technol., 37(4), pp. 2033–2041 (2023). https://doi.org/10.1007/s12206-023-0339-3.
20.Torabi, A., Khadem, M., Zareinia, K., etal. “Manipulability of teleoperated surgical robotswith application in design of master/slavemanipulators”, Int. Symp. Med. Robot. ISMR, pp. 1–6(2018).https://doi.org/10.1109/ISMR.2018.8333307.
21.Lachner, J., Schettino, V., Allmendinger, F., et al.“The influence of coordinates in roboticmanipulability analysis”, Mechanism and machineTheory, 146, 103722 (2020).https://doi.org/10.1016/j.mechmachtheory.2019.103722.
22.Chen, C., Wang, X., Chen, H., et al. “Analysis ofsingular configuration of robotic manipulators”,Electronics, 10(18), p. 2189 (2021). https://doi.org/10.3390/electronics10182189.
23.Zhu, Q., Tian, M., Liu, Q., et al. “Design, kinematicsand manipulability analyses of a serial-link robot forminimally invasive treatment in femoral shaftfractures”, Journal of Mechanics in Medicine andBiology, 22(09), 2240060 (2022).https://doi.org/10.1142/S0219519422400607.
24.Akli, I. “Trajectory planning for mobile manipulatorsincluding manipulability percentage index”,International Journal of Intelligent Robotics andApplications, 5(4), pp.543-557 (2021). https://doi.org/10.1007/s41315-021-00190-3.
25.Dufour, K. and Suleiman, W. “On maximizingmanipulability index while solving a kinematicstask”, Journal of Intelligent & Robotic Systems 100,pp. 3-13 (2020). https://doi.org/10.1007/s10846-020-01171-7.
26.Vahrenkamp, N., Asfour, T., Metta, G., et al.“Manipulability analysis”, In 12th IEEE-RAS International Conference on Humanoid Robots, pp. 568-573 (2012).
27.Bicchi, A, Melchiorri, C., and Balluchi, D. “Onthemobility and manipulability of general multiplelimb robots”, IEEE Transactions on Robotics andAutomation, 11(2), pp. 215-228 (1995).https://doi.org/10.1109/70.370503.
28.Shen, Y., Hsiao, B.P.Y., Ma, J., et al. “Upper limbredundancy resolution under gravitational loadingconditions: Arm postural stability index based ondynamic manipulability analysis”, In IEEE-RAS Int.Conf. Humanoid Robot., pp. 332–338 (2017).https://doi.org/10.1109/HUMANOIDS.2017.8246894.
29.Kumar, R. and Mukherjee, S. “Algorithmic selectionof preferred grasp poses using manipulability ellipsoidforms”, J. Mech. Robot., 14(5), pp. 1–24 (2022).https://doi.org/10.1115/1.4053374.
30.Rozo, L., Jaquier, N., Calinon, S., et al. “Learningmanipulability ellipsoids for task compatibility inrobot manipulation”, IEEE Int. Conf. Intell. Robot.Syst., pp. 3183–3189 (2017).https://doi.org/10.1109/IROS.2017.8206150.
31.Vahrenkamp, N. and Asfour, T. “Representing therobot’s workspace through constrained manipulabilityanalysis”, Autonomous Robots, 38(1), pp. 17-30(2015). https://doi.org/10.1007/s10514-014-9394-z.
32.Albers, A., Brudniok, S., Ottnad, J., et al. “Upper body of a new humanoid robot-the design of ARMAR III”,In 6th IEEE-RAS International Conference onHumanoid Robots, pp. 308-313 (2006).https://doi.org/10.1109/ICHR.2006.321289.
33.Sulaiman, S. and Sudheer, A.P. “Dexterity analysisand intelligent trajectory planning of redundant dualarms for an upper body humanoid robot”, IndustrialRobot: The International Journal of RoboticsResearch and Application, 48(6), pp.915-928 (2021).https://doi.org/10.1108/IR-12-2020-0279.
34.Sulaiman, S. and Sudheer, A.P. “Modeling of awheeled humanoid robot and hybrid algorithm-basedpath planning of wheel base for the dynamic obstaclesavoidance”, Industrial Robot: the InternationalJournal of Robotics Research and Application, 49(6),103722 (2022).https://doi.org/10.1108/IR-12-2021-0298.
35.Winter D.A. Biomechanics and motor control ofhuman movement, John Wiley & Sons, (2009).https://doi.org/10.2002/978-0-470-54914-8.
36.Lynch, K.M. and Park, F., Modern Robotics -Mechanics, Planning, and Control (2017).https://doi.org/10.212/22358974561.
37.Jamisola Jr, R.S., Mastalli, C., and Ibikunle. F.“Modular relative jacobian for combined 3-arm parallel manipulators”, International Journal of Mechanical Engineering and Robotics Research, 5(2) pp. 90-5 (2016). https://doi.org/10.18178/ijmerr.5.2.90-95.
38.Fu, Z., Han, B., and Chen, Y. “Levenberg–Marquardtmethod with general convex penalty for nonlinearinverse problems”, Journal of Computational andApplied Mathematics, 404, 113771 (2022).https://doi.org/10.1016/j.cam.2021.113771.