Manipulability analysis of a tree type humanoid upper-body robot with dual redundant arms

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, National Institute of Technology, Mechatronics/Robotics Laboratory, Calicut, India

2 Department of Mechanical Engineering, National Institute of Technology, Mechatronics/Robotics Laboratory, Palakkad, India

3 Institute of Information Technology and Intelligent Systems, Kazan Federal University, Laboratory of Intelligent Robotics Systems (LIRS),Kazan, Russia

Abstract

Manipulability analysis of humanoid robots with redundant arms is difficult due to the presence of large number of Degrees of Freedom (DOF). Most researchers address manipulability issues without considering the effects of joint limits, obstacles and singular spaces in a Cartesian workspace. Hence, development of an accurate manipulability analysis technique, which can increase task performance by considering the above-mentioned issues is crucial for completing cooperative and non-cooperative tasks. Our paper proposes a new approach for determining manipulability measurements of a humanoid robot with redundant arms doing coordinated and non-coordinated tasks by analysing manipulability ellipsoids constructed through a desired trajectory. Penalty functions for compensating joint limits and avoiding obstacle regions are multiplied along with a Jacobian matrix to generate an Augmented Jacobian matrix. Manipulability ellipsoids determined using the Augmented Jacobian for individual configurations are compared with desired manipulability ellipsoids for finalizing the joint solutions. The advantages of proposed approach over conventional approach and significance of employing proposed approach for updating joint configurations are presented in this paper. The experimental validation of the proposed method using a developed humanoid robot is also given in this paper.

Keywords

Main Subjects


References:
1.Shah, J., Wiken, J., Williams, B., et al. “Improvedhuman-robot team performance using chaski, ahuman-inspired plan execution system”,In Proceedings of the 6th International Conference onHuman-Robot Interaction, pp. 29-36 (2011). https://doi.org/10.1145/1957656.1957668.
2.Díaz-Boladeras, M., Paillacho, D., Angulo, C., et al.“Evaluating group-robot interaction in crowded publicspaces: A week-long exploratory study in the wildwith a humanoid robot guiding visitors through ascience museum”, International Journal ofHumanoid Robotics, 12(04),1550022 (2015).https://doi.org/10.1142/S021984361550022X.
3.Karar, A.S., Said, S., and Beyrouth, T. “Pepperhumanoid robot as a service robot: A customerapproach”, In 2019 3rd International Conference onBio-Engineering for Smart Technologies(BioSMART), pp. 1-4 (2019).https://doi.org/10.1109/BIOSMART.2019.8734250.
4.Lee, M.K., Forlizzi, J., Rybski, P.E., et al. “Thesnackbot: documenting the design of a robot for long-term human-robot interaction”, In Proceedings of the4th ACM/IEEE International Conference on Human Robot Interaction, pp. 7-14 (2009). https://doi.org/10.1145/1514095.1514100.
5.Mišeikis, J., Caroni, P., Duchamp, P., et al. “Lio-apersonal robot assistant for human-robot interactionand care applications”, IEEE Robotics andAutomation Letters, 5, pp. 4 (2020).https://doi.org/10.1109/LRA.2020.3007462.
6.Graf, B. and Eckstein, J. “Service robots andautomation for the disabled and nursing home care”,In Springer Handbook of Automation, Cham: Springer International Publishing, pp. 1331-1347 (2023). https://doi.org/10.1007/978-3-030-96729-1-62.
7.Morris, K.J., Samonin, V., Baltes, J., et al. “A robustinteractive entertainment robot for robot magicperformances”, Applied Intelligence, 49, pp. 3834-3844 (2019). https://doi.org/10.1007/s10489-019-01565-7.
8.Retto, J. “Sophia, first citizen robot of the world”,Univ. Nac. Mayor San Marcos, (2017).https://doi.org/10.26619/16477251.DT0122.4.
9.Ambrose, R.O. “Development and deployment ofrobonaut 2 to the international space station”, In ICRA2011 (International Conference on Robotics andAutomation (2011).https://doi.org/10.1109/ICRA.2011.5979830.
10.Dwarakanath, N. “Gaganyaan mission: meetVyommitra, the talking human robot that ISRO willsend to space”, India Today, 22, p. 22 (2020).https://doi.org/10.2514/6.2023-2222.
11.Rastegarpanah, A., Aflakian, A., and Stolkin, R.“Improving the manipulability of a redundant armusing decoupled hybrid visual servoing”, AppliedSciences, 11,p. 23 (2021).https://doi.org/10.3390/app112311566.
12.Neha, E. and Shrivastava, Y. “Analysis ofmanipulability for a robotic hand using statisticalapproach”, Materials Today: Proceedings, 43, pp.164-168 (2021).https://doi.org/10.1016/j.matpr.2020.11.397.
13.Patel, S. and Sobh, T. “Task based synthesis of serialmanipulators”, Journal of Advanced Research, 6(3),pp. 479-492 (2015).https://doi.org/10.1016/j.jare.2014.12.006.
14.Freddi, A., Longhi, S., Monteriù, A., et al.“Redundancy analysis of cooperative dual-armmanipulators”, Int. J. Adv. Robot. Syst., 13(5), pp. 1–14 (2016).https://doi.org/10.1177/1729881416657754.
15.Chan, T.F. and Dubey, R.V. “A weighted least-normsolu-tion based scheme for avoiding joint limits forredundant joint manipulators”, IEEE Transactions onRobotics and Automation, 11(2), pp. 286-92 (1995). https://doi.org/ 10.1109/70.370511.
16.Ferreira, N.F. and Machado, J.T. “Manipulabilityanalysis of two-arm robotic systems”, 4th IEEE Int.Conf. Intell. Eng. Syst., pp. 101–109 (2000).https://doi.org/10.1311/252951895.
17.Zhang, S., Ouyang, B., He, X., et al. “Face trackingstrategy based on manipulability of a 7-DOF robot armand head motion intention ellipsoids”, IEEE Int. Conf.Real-Time Comput. Robot, pp. 290–295 (2022). https://doi.org/ 10.1109/RCAR54675.2022.9872298.
18.Chiriatti, G., Bottiglione, A., and Palmieri, G.“Manipulability optimization of a rehabilitativecollaborative robotic system”, Machines, 10(6), pp. 1–11 (2022).https://doi.org/10.3390/machines10060452.
19.Choi, Y.S., Rhee, I., Hoang, P.T., et al. “Simpledesired manipulability ellipsoid with velocity andforce for control of redundant manipulator”, J. Mech.Sci. Technol., 37(4), pp. 2033–2041 (2023). https://doi.org/10.1007/s12206-023-0339-3.
20.Torabi, A., Khadem, M., Zareinia, K., etal. “Manipulability of teleoperated surgical robotswith application in design of master/slavemanipulators”, Int. Symp. Med. Robot. ISMR, pp. 1–6(2018).https://doi.org/10.1109/ISMR.2018.8333307.
21.Lachner, J., Schettino, V., Allmendinger, F., et al.“The influence of coordinates in roboticmanipulability analysis”, Mechanism and machineTheory, 146, 103722 (2020).https://doi.org/10.1016/j.mechmachtheory.2019.103722.
22.Chen, C., Wang, X., Chen, H., et al. “Analysis ofsingular configuration of robotic manipulators”,Electronics, 10(18), p. 2189 (2021). https://doi.org/10.3390/electronics10182189.
23.Zhu, Q., Tian, M., Liu, Q., et al. “Design, kinematicsand manipulability analyses of a serial-link robot forminimally invasive treatment in femoral shaftfractures”, Journal of Mechanics in Medicine andBiology, 22(09), 2240060 (2022).https://doi.org/10.1142/S0219519422400607.
24.Akli, I. “Trajectory planning for mobile manipulatorsincluding manipulability percentage index”,International Journal of Intelligent Robotics andApplications, 5(4), pp.543-557 (2021). https://doi.org/10.1007/s41315-021-00190-3.
25.Dufour, K. and Suleiman, W. “On maximizingmanipulability index while solving a kinematicstask”, Journal of Intelligent & Robotic Systems 100,pp. 3-13 (2020). https://doi.org/10.1007/s10846-020-01171-7.
26.Vahrenkamp, N., Asfour, T., Metta, G., et al.“Manipulability analysis”, In 12th IEEE-RAS International Conference on Humanoid Robots, pp. 568-573 (2012).
27.Bicchi, A, Melchiorri, C., and Balluchi, D. “Onthemobility and manipulability of general multiplelimb robots”, IEEE Transactions on Robotics andAutomation, 11(2), pp. 215-228 (1995).https://doi.org/10.1109/70.370503.
28.Shen, Y., Hsiao, B.P.Y., Ma, J., et al. “Upper limbredundancy resolution under gravitational loadingconditions: Arm postural stability index based ondynamic manipulability analysis”, In IEEE-RAS Int.Conf. Humanoid Robot., pp. 332–338 (2017).https://doi.org/10.1109/HUMANOIDS.2017.8246894.
29.Kumar, R. and Mukherjee, S. “Algorithmic selectionof preferred grasp poses using manipulability ellipsoidforms”, J. Mech. Robot., 14(5), pp. 1–24 (2022).https://doi.org/10.1115/1.4053374.
30.Rozo, L., Jaquier, N., Calinon, S., et al. “Learningmanipulability ellipsoids for task compatibility inrobot manipulation”, IEEE Int. Conf. Intell. Robot.Syst., pp. 3183–3189 (2017).https://doi.org/10.1109/IROS.2017.8206150.
31.Vahrenkamp, N. and Asfour, T. “Representing therobot’s workspace through constrained manipulabilityanalysis”, Autonomous Robots, 38(1), pp. 17-30(2015). https://doi.org/10.1007/s10514-014-9394-z.
32.Albers, A., Brudniok, S., Ottnad, J., et al. “Upper body of a new humanoid robot-the design of ARMAR III”,In 6th IEEE-RAS International Conference onHumanoid Robots, pp. 308-313 (2006).https://doi.org/10.1109/ICHR.2006.321289.
33.Sulaiman, S. and Sudheer, A.P. “Dexterity analysisand intelligent trajectory planning of redundant dualarms for an upper body humanoid robot”, IndustrialRobot: The International Journal of RoboticsResearch and Application, 48(6), pp.915-928 (2021).https://doi.org/10.1108/IR-12-2020-0279.
34.Sulaiman, S. and Sudheer, A.P. “Modeling of awheeled humanoid robot and hybrid algorithm-basedpath planning of wheel base for the dynamic obstaclesavoidance”, Industrial Robot: the InternationalJournal of Robotics Research and Application, 49(6),103722 (2022).https://doi.org/10.1108/IR-12-2021-0298.
35.Winter D.A. Biomechanics and motor control ofhuman movement, John Wiley & Sons, (2009).https://doi.org/10.2002/978-0-470-54914-8.
36.Lynch, K.M. and Park, F., Modern Robotics -Mechanics, Planning, and Control (2017).https://doi.org/10.212/22358974561.
37.Jamisola Jr, R.S., Mastalli, C., and Ibikunle. F.“Modular relative jacobian for combined 3-arm parallel manipulators”, International Journal of Mechanical Engineering and Robotics Research, 5(2) pp. 90-5 (2016). https://doi.org/10.18178/ijmerr.5.2.90-95.
38.Fu, Z., Han, B., and Chen, Y. “Levenberg–Marquardtmethod with general convex penalty for nonlinearinverse problems”, Journal of Computational andApplied Mathematics, 404, 113771 (2022).https://doi.org/10.1016/j.cam.2021.113771.
Volume 32, Issue 2
Transactions on Mechanical Engineering
January and February 2025 Article ID:6054
  • Receive Date: 11 January 2022
  • Revise Date: 02 October 2023
  • Accept Date: 03 March 2024