Stance detection on social media, case study: Persian sentences using deep learning architecture

Document Type : Article


1 Department of Mathematics and Computer Science, Arak Branch, Islamic Azad University, Arak, Iran.

2 Department of Computer, K. N. Toosi University of Technology, Tehran, Iran.


In the paper, we need to identify the stance of persian language in social networks. While the data set for detecting the stance with persian content have applications. Therefore, with the aim of accurately identifying the stance in the post and extracting the stances of persian language, the user expressed a post that relation to one or more target entities a new method for the first time. Hybrid LSTM-CNN architecture was used and, unlike previous researches, rotational learning rate was used, and a new the method for processing data before entering the network is presented to improve the results, which can stance persian in the network. Identifying the social in addition, to solve the problems related to the lack of data, the BERT model was investigated to detect the persian stance. On the based on the results obtained, tagged data was collected, and after many surveys and numerous meetings. Taged data analyzed from the telegram social network in the field of business sport for a limited time frame, and show how the presented model has achieved higher accuracy than Competitors. At the end of the training course, the proposed model improves results by 11 .3% in terms of accuracy.


Main Subjects

1. Mohammad, S., Kiritchenko, S., Sobhani, P., et al. "Detecting stance in tweets", In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval), pp. 31-41 (2016). DOI: 10.26615/978-954- 452-049-6 005.
2. Wei, W., Zhang, X., Liu, X., et al. "A specific convolutio Wang nal neural network system for effective stance detection", In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval)", NAACL-HLT, pp. 384-388 (2016). DOI:
3. Zarrella, G. and Marsh, M. "Transfer learning for stance detection", In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval- 2016)", pp. 458-463 (2016). DOI: 10.18653/v1/S16- 1074.
4. Du, J., Xu, R., He, Y., et al. "Stance classification with target specific neural attention networks", In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 3988-3994 (2016). DOI: 10.24963/ijcai.2017/557.
5. Zhou, Y., Cristea, A., and Shi, L. "Connecting targets to tweets: Semantic attention based model for target specific stance detection", In Proceedings of the 18th International Conference on Web Information Systems Engineering (WISE), pp. 18-32, Springer (2016). DOI: 10.1007/978-3-319-68783-4 2.
6. Dey, K., Shrivastava, R., and Kaushik, S. "Topical stance detection for twitter: A two-phase lstm model using attention", In Proceedings of the 40th European Conference on Information Re-trieval (ECIR), pp. 529-536, Springer (2018). DOI: 10.1007/978-3-319- 76941-7 40.
7. Wei, P., M., Mao, W., et al. "A target-guided neural memory model for stance detection in twitter", In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), p. 18, IEEE (2018b). DOI: 10.1109/IJCNN.2018.8489665.
8. Siddiqua, U.A., Chy, A.N., and Aono, M. "Tweet stance detection using an attention based neural ensemble model", In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, pp. 1868-1873 (2019). Minneapolis, Minnesota. Association for Computational Linguistics. DOI:10.18653/v1/N19-1185.
9. Aker, A., Derczynski, L., and Bontcheva, K. "Simple open stance classification for rumour analysis", Int. Conf. Recent Adv. Nat. Lang. Process. RANLP, Septe, pp. 31-39 (2017). DOI: 10.26615/978-954-452- 049-6 005.
10. Pamungkas, E.W., Basile, V., and Patti, V. "Stance classification for rumour analysis in Twitter: Exploiting affective information and conversation structure", p. 6 (2019). Publication at: DOI: 10.48550/ arXiv.1901.01911.
11. Ghanem, B., Rosso, P., and Rangel, F. "Stance detection in fake news a combined feature representation", Association for Computational Linguistics, W18-55, pp. 66-71 (2019). DOI: 10.1371/journal.pone.0287298.
12. Hanselowski, A., PVS, A., Schiller, B., et al. "A retrospective analysis of the fake news challenge stance detection task", Proceedings of the 27th International Conference on Computational Linguistics, Publisher: Association for Computational Linguistic, pp. 1859- 1874 (2018). DOI: 10.48550/arXiv.1806.0180.
13. Chen, S., Khashabi, D., Yin, W., et al. "Seeing things from a different angle: Discovering diverse perspectives about claims", NAACL, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1(Long and Short Papers), Publisher: Association for Computational Linguistics, pp. 542- 557 (June 2019). DOI: 10.48550/arXiv.1906.03538.
14. Sadiq, S., Wagner, N., Shyu, M., et al. "High dimensional latent space variational auto encoders for fake news detection", USA, pp. 437-442 (2019). DOI: 10.1109/MIPR.2019.00088.
15. Pouran, A., Veyseh, B., Thai, M.T., et al. "Rumor detection in social networks via deep contextual modelling", USA, pp. 113-120 (2019). DOI: 10.1093/comjnl/bxab118.
16. Baly, R., Mohtarami, M., Glass, J., et al. "Integrating stance detection and fact checking in a unified gorpus", pp. 21-27 (2018). DOI: 10.48550/arXiv.1804.08012.
17. Bourgonje, P., Moreno Schneider, J., and Rehm , G. "From clickbait to fake news detection: An approach based on detecting the stance of headlines to articles", pp. 84-89 (2018). DOI: 10.18653/v1/W17-4215.
18. Kochkina, E., Liakata, M., and Augenstein, I. "Turing at SemEval-2017 task 8: Sequential approach to rumour stance classification with rbanch-LSTM", 2016, pp. 475-480 (2018). DOI: 10.18653/v1/S17-2083.
19. Conforti, C., Pilehvar, M.T., and Collier, N. "Towards automatic fake news detection: Cross-level stance detection in news articles", pp. 40-49 (2019). DOI:10.18653/v1/W18-5507.
20. Gorrell, G., Kochkina, E., Liakata, M., et al. "RumourEval: Determining rumour veracity and support for rumours genevieve", Proc. 13th Int. Work. Semant. Eval, pp. 845-854 (2019). DOI: 10.18653/v1/S19-2147.
21. Islam, M.R., Muthiah, S., and Ramakrishnan, N. "RumorSleuth: Joint detection of rumor veracity and user stance", pp. 131-136 (2019). DOI: 10.1145/3341161.3342916.
22. Wei, P., Xu, N., and Mao, W. "Modeling conversation structure and temporal dynamics for jointly predicting rumor stance and veracity", pp. 4789-4800 (2019). DOI: 10.18653/v1/D19-1485.
23. Zhang, Q., Liang, S., Lipani, A., et al. "From stances' imbalance to their hierarchical representation and detection", 1, pp. 2323-2332 (2019). DOI: 10.1145/3308558.3313724.
24. Svanera, M., Savardi, M., Benini, S., et al. "Transfer learning of deep neural network representations for fMRI decoding", Journal of Neuroscience Methods, 328 (2019). DOI: 10.1016/j.jneumeth.2019.108319.
25. Zhang, Q., Yilmaz, E., and Liang, Sh. "Ranking-based method for news stance detection", In Companion Proceedings of the Web Conference, ACM Press, pp. 41-42 (2018). DOI: 10.1145/3184558.3186919.
26. Mohtarami, M., Baly, R., Glass, J.B., et al. "Automatic stance detection using end-to-end memory networks", NAACL-HLT '18, New Orleans, LA, USA, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Publisher: Association for Computational Linguistics, pp. 767-776, (June 2018). DOI: 10.18653/v1/N18-1070.
27. Ma, J., Gao, W., and Wong, K. "Detect rumor and stance jointly by neural multi-task learning", In Companion Proceedings of the Web Conference, pp. 585-593 (2018). DOI: 10.1145/3184558.3188729.
28. Aldayel, A. and Magdy, W. "Stance detection on social media: State of the art and trends", 58(4), 102-597 (July 2021). DOI: 10.48550/arXiv.2006.03644.
29. Farhoodi, M., Toloie Eshlaghy, A., and Motadel, M.R. "Proposed model for persian stance detection on social", pp. 1048-1059 (June 2023). DOI: 10.5829/IJE.2023.36.06C.03.
30. Mottaghi, V., Esmaeili, M., AliBazaee, Gh., et al. "A decision-making system for detecting fake persian news by improving deep learning algorithms- case study of Covid-19 news", J. Appl. Res. Ind. Eng., 8, Spec Issue. pp. 1-17 (2021). DOI: 10.22105/jarie.2021.281257.1299.
31. Dutta, S., Caur, S., Chakrabarti, S., et al. "Semi-supervised stance detection of tweets via distant network supervision", in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 241-251 (2022). DOI: 10.1145/3488560.3498511.
32. Schiller, B., Daxenberger, J., and Gurevych, I. "Stance detection benchmark: How robust is your stance detection?", KI-Kunstliche Intelligenz, pp. 1-13 (2021). DOI: 10.48550/arXiv.2001.01565.
33. Khiabani, P.J. and Zubiaga, A. "Few-shot learning for cross-target stance detection by aggregating multimodal embedding", arxivpreprint arXiv:2301.04535, pp. 2081-2090 (2023). DOI: 10.48550/arXiv.2301.04535.
34. Ren, Y., Liu, YJ., Guo, X., et al. "News stance discrimination based on a heterogeneous network of social background information fusion", Entropy, 25(1), p. 78 (2022). DOI: 10.3390/e25010078.
35. Li, B., Hou, Y., and Che, W. "Data augmentation approaches in natural language processing: A survey", AI Open, 3, pp. 71-90 (2022). DOI: 10.48550/arXiv.2110.01852.
36. Maharana, K., Mondal, S., and Nemade, B. "A review: Data pre-processing and data augmentation techniques", Global Transitions Proceedings, 3, pp. 91- 99 (2022). DOI: 10.1016/j.gltp.2022.04.020.
37. Beddiar, D.R., Jahan, M.S., and Oussalah, M. "Data expansion using back translation and paraphrasing for hate speech detection", Online Social Networks and Media, 24, 1001543 (2021). DOI: 10.1016/j.osnem.2021.100153.