1. Mohammad, S., Kiritchenko, S., Sobhani, P., et al. "Detecting stance in tweets", In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval), pp. 31-41 (2016). DOI: 10.26615/978-954- 452-049-6 005.
2. Wei, W., Zhang, X., Liu, X., et al. "A specific convolutio Wang nal neural network system for effective stance detection", In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval)", NAACL-HLT, pp. 384-388 (2016). DOI:
10.18653/v1/S16-1062.
3. Zarrella, G. and Marsh, M. "Transfer learning for stance detection", In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval- 2016)", pp. 458-463 (2016). DOI: 10.18653/v1/S16- 1074.
4. Du, J., Xu, R., He, Y., et al. "Stance classification with target specific neural attention networks", In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 3988-3994 (2016). DOI: 10.24963/ijcai.2017/557.
5. Zhou, Y., Cristea, A., and Shi, L. "Connecting targets to tweets: Semantic attention based model for target specific stance detection", In Proceedings of the 18th International Conference on Web Information Systems Engineering (WISE), pp. 18-32, Springer (2016). DOI: 10.1007/978-3-319-68783-4 2.
6. Dey, K., Shrivastava, R., and Kaushik, S. "Topical stance detection for twitter: A two-phase lstm model using attention", In Proceedings of the 40th European Conference on Information Re-trieval (ECIR), pp. 529-536, Springer (2018). DOI: 10.1007/978-3-319- 76941-7 40.
7. Wei, P., M., Mao, W., et al. "A target-guided neural memory model for stance detection in twitter", In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), p. 18, IEEE (2018b). DOI: 10.1109/IJCNN.2018.8489665.
8. Siddiqua, U.A., Chy, A.N., and Aono, M. "Tweet stance detection using an attention based neural ensemble model", In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, pp. 1868-1873 (2019). Minneapolis, Minnesota. Association for Computational Linguistics. https://aclanthology.org/N19-1185 DOI:10.18653/v1/N19-1185.
9. Aker, A., Derczynski, L., and Bontcheva, K. "Simple open stance classification for rumour analysis", Int. Conf. Recent Adv. Nat. Lang. Process. RANLP, Septe, pp. 31-39 (2017). DOI: 10.26615/978-954-452- 049-6 005.
10. Pamungkas, E.W., Basile, V., and Patti, V. "Stance classification for rumour analysis in Twitter: Exploiting affective information and conversation structure", p. 6 (2019). Publication at:
https://www.researchgate.net/publication/330212371 DOI: 10.48550/ arXiv.1901.01911.
11. Ghanem, B., Rosso, P., and Rangel, F. "Stance detection in fake news a combined feature representation", Association for Computational Linguistics, W18-55, pp. 66-71 (2019). DOI: 10.1371/journal.pone.0287298.
12. Hanselowski, A., PVS, A., Schiller, B., et al. "A retrospective analysis of the fake news challenge stance detection task", Proceedings of the 27th International Conference on Computational Linguistics, Publisher: Association for Computational Linguistic, pp. 1859- 1874 (2018). DOI: 10.48550/arXiv.1806.0180.
13. Chen, S., Khashabi, D., Yin, W., et al. "Seeing things from a different angle: Discovering diverse perspectives about claims", NAACL, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1(Long and Short Papers), Publisher: Association for Computational Linguistics, pp. 542- 557 (June 2019). DOI: 10.48550/arXiv.1906.03538.
14. Sadiq, S., Wagner, N., Shyu, M., et al. "High dimensional latent space variational auto encoders for fake news detection", USA, pp. 437-442 (2019). DOI: 10.1109/MIPR.2019.00088.
15. Pouran, A., Veyseh, B., Thai, M.T., et al. "Rumor detection in social networks via deep contextual modelling", USA, pp. 113-120 (2019). DOI: 10.1093/comjnl/bxab118.
16. Baly, R., Mohtarami, M., Glass, J., et al. "Integrating stance detection and fact checking in a unified gorpus", pp. 21-27 (2018). DOI: 10.48550/arXiv.1804.08012.
17. Bourgonje, P., Moreno Schneider, J., and Rehm , G. "From clickbait to fake news detection: An approach based on detecting the stance of headlines to articles", pp. 84-89 (2018). DOI: 10.18653/v1/W17-4215.
18. Kochkina, E., Liakata, M., and Augenstein, I. "Turing at SemEval-2017 task 8: Sequential approach to rumour stance classification with rbanch-LSTM", 2016, pp. 475-480 (2018). DOI: 10.18653/v1/S17-2083.
19. Conforti, C., Pilehvar, M.T., and Collier, N. "Towards automatic fake news detection: Cross-level stance detection in news articles", pp. 40-49 (2019). DOI:10.18653/v1/W18-5507.
20. Gorrell, G., Kochkina, E., Liakata, M., et al. "RumourEval: Determining rumour veracity and support for rumours genevieve", Proc. 13th Int. Work. Semant. Eval, pp. 845-854 (2019). DOI: 10.18653/v1/S19-2147.
21. Islam, M.R., Muthiah, S., and Ramakrishnan, N. "RumorSleuth: Joint detection of rumor veracity and user stance", pp. 131-136 (2019). DOI: 10.1145/3341161.3342916.
22. Wei, P., Xu, N., and Mao, W. "Modeling conversation structure and temporal dynamics for jointly predicting rumor stance and veracity", pp. 4789-4800 (2019). DOI: 10.18653/v1/D19-1485.
23. Zhang, Q., Liang, S., Lipani, A., et al. "From stances' imbalance to their hierarchical representation and detection", 1, pp. 2323-2332 (2019). DOI: 10.1145/3308558.3313724.
24. Svanera, M., Savardi, M., Benini, S., et al. "Transfer learning of deep neural network representations for fMRI decoding", Journal of Neuroscience Methods, 328 (2019). DOI: 10.1016/j.jneumeth.2019.108319.
25. Zhang, Q., Yilmaz, E., and Liang, Sh. "Ranking-based method for news stance detection", In Companion Proceedings of the Web Conference, ACM Press, pp. 41-42 (2018). DOI: 10.1145/3184558.3186919.
26. Mohtarami, M., Baly, R., Glass, J.B., et al. "Automatic stance detection using end-to-end memory networks", NAACL-HLT '18, New Orleans, LA, USA, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Publisher: Association for Computational Linguistics, pp. 767-776, (June 2018). DOI: 10.18653/v1/N18-1070.
27. Ma, J., Gao, W., and Wong, K. "Detect rumor and stance jointly by neural multi-task learning", In Companion Proceedings of the Web Conference, pp. 585-593 (2018). DOI: 10.1145/3184558.3188729.
28. Aldayel, A. and Magdy, W. "Stance detection on social media: State of the art and trends", 58(4), 102-597 (July 2021). DOI: 10.48550/arXiv.2006.03644.
29. Farhoodi, M., Toloie Eshlaghy, A., and Motadel, M.R. "Proposed model for persian stance detection on social", pp. 1048-1059 (June 2023). DOI: 10.5829/IJE.2023.36.06C.03.
30. Mottaghi, V., Esmaeili, M., AliBazaee, Gh., et al. "A decision-making system for detecting fake persian news by improving deep learning algorithms- case study of Covid-19 news", J. Appl. Res. Ind. Eng., 8, Spec Issue. pp. 1-17 (2021). DOI: 10.22105/jarie.2021.281257.1299.
31. Dutta, S., Caur, S., Chakrabarti, S., et al. "Semi-supervised stance detection of tweets via distant network supervision", in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 241-251 (2022). DOI: 10.1145/3488560.3498511.
32. Schiller, B., Daxenberger, J., and Gurevych, I. "Stance detection benchmark: How robust is your stance detection?", KI-Kunstliche Intelligenz, pp. 1-13 (2021). DOI: 10.48550/arXiv.2001.01565.
33. Khiabani, P.J. and Zubiaga, A. "Few-shot learning for cross-target stance detection by aggregating multimodal embedding", arxivpreprint arXiv:2301.04535, pp. 2081-2090 (2023). DOI: 10.48550/arXiv.2301.04535.
34. Ren, Y., Liu, YJ., Guo, X., et al. "News stance discrimination based on a heterogeneous network of social background information fusion", Entropy, 25(1), p. 78 (2022). DOI: 10.3390/e25010078.
35. Li, B., Hou, Y., and Che, W. "Data augmentation approaches in natural language processing: A survey", AI Open, 3, pp. 71-90 (2022). DOI: 10.48550/arXiv.2110.01852.
36. Maharana, K., Mondal, S., and Nemade, B. "A review: Data pre-processing and data augmentation techniques", Global Transitions Proceedings, 3, pp. 91- 99 (2022). DOI: 10.1016/j.gltp.2022.04.020.
37. Beddiar, D.R., Jahan, M.S., and Oussalah, M. "Data expansion using back translation and paraphrasing for hate speech detection", Online Social Networks and Media, 24, 1001543 (2021). DOI: 10.1016/j.osnem.2021.100153.