Peristaltic motion of non-Newtonian fluid under the influence of inclined magnetic field, porous medium, and chemical reaction

Document Type : Article

Authors

1 Thiruvalluvar University, Serkadu,, Vellore, Tamilnadu, 632 115, India

2 JEI Mathaajee College of Engineering, Kanchipuram, 631 552, India.

Abstract

In this article, we studied the peristaltic motion of Jeffrey fluid with porous medium through an asymmetric channel under the influence of velocity slip parameters. Governing equations for non-Newtonian fluid flow models such as continuity, momentum, energy and mass transfer equations are formulated. Externally applied inclined magnetic field is also considered in the flow pattern. The lengthy governing equation of fluid motion is reduced by taking into the account of approximation of longer wavelengths and smaller Reynolds numbers The resulting governing equations are solved exactly. The graph shows the results of the impact of various related fluid parameters such as Hartmann number, Darcy number, Jeffrey fluid parameter, amplitude ratio, chemical reactions of fluid velocity, temperature, concentration, pressure rise, pressure gradient, streamlines etc. Finally, the various waveforms of the trapping phenomenon are presented.

Keywords

Main Subjects


References:
1. Latham, T.W. "Fluid motion in a peristaltic pump", MS Thesis. Cambridge M.A: MIT (1966).
2. Brown,T.D. and Hung, T.K. "Computational and experimental investigation of two-dimensional nonlinear peristaltic  flow", J. Fluid Mech., 83, pp. 249-273 (1977). DOI: 10.1017/S0022112077001189.
3. Vajravelu, K., Sreenadh, S., and Babu, V.R. "Peristaltic transport of Herschel-Bulkley fluid in an inclined tube", J. Nonlinear Mech., 40, pp. 83-90 (2005). DOI: 10.1016/j.ijnonlinmec.2004.07.001.
4. Wang, Y., Hayat, T., and Hutter, K. "Peristaltic  flow of a Johnson Segalman  fluid through a deformable tube", Theor Comput Fluid Dyn., 21, pp. 369-380 (2007). DOI 10.1007/s00162-007-0054-1.
5. Bhatti, M.M. and Abdelsalam, S.I. "Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects", Waves in Random and Complex Media (2021). DOI: 10.1080/17455030.2021.1998728.
6. Magesh, A., Kothandapani, M., and Pushparaj, V. "Electro-osmotic flow of Jeffry fluid in an asymmetric micro channel under the effect of magnetic field", J Phys: Conf Ser., 1850, 012102 (2021). DOI: 10.1088/1742-6596/1850/1/012102.
7. Magesh, A., Tamizharasi, P., and Vijayaragavan, R. "MHD flow of (Al2O3/H2O) nanofluid under the peristaltic mechanism in an asymmetric channel", Heat Transf., 51(7), pp. 6563-6577 (2022). DOI: 10.1002/htj.22613.
8. Magesh, A., Tamizharasi, P., and Kamalakkannan, J. "Analysis of Bejan number and Entropy generation of Non-Newtonian nanofluid through an asymmetric microchannel", Numer Heat Transf part A: Appl. (2023). DOI: 10.1080/10407782.2023.2240507.
9. Muthuraj, R., Nirmala, K., and Srinivas, S. "Influences of chemical reaction and wall properties on MHD Peristaltic transport of a Dusty fluid with Heat and Mass transfer", Alexandr Eng J., 55, pp. 597-611 (2016). DOI: 10.1016/j.aej.2016.01.013.
10. Magesh, A., Praveen Kumar, P., Tamizharasi, P., et al. "Effect of magnetic field on the peristaltic transport of Oldroyd-B fluid in an asymmetric inclined channel", J Phys: Conf Ser., 1850, 012111 (2021). DOI: 10.1088/1742-6596/1850/1/012111.
11. Tamizharasi, P., Vijayaragavan, R., and Magesh, A. "Electro-osmotic driven flow of Eyring Powell nanofluid in an asymmetric channel", Math Methods Appl Sci., pp. 1-18 (2023). DOI 10.1002/mma.9270.
12. Tamizharasi, P., Vijayaragavan, R., and Magesh, A. "Heat and Mass transfer analysis of the peristaltic driven flow of nano
uid in an asymmetric channel", Partial Diff Equ Appl Math., 4, 100087 (2021). DOI: 10.1016/j.padiff.2021.100087.
13. Magesh, A. and Kothandapani, M. "Analysis of heat and mass transfer on the peristaltic movement of Carreau nanofluids", J Mech Med Biol., 21(9), 2150068 (2021). DOI: 10.1142/S0219519421500688.
14. Rabeeah, R., Rahila, N., and Sara I. Abdelsalam. "Microorganisms swimming through radiative Sutterby nanofluid over stretchable cylinder: Hydrodynamic effect", Numer. Methods Partial Differential Equations., 39(2), pp. 975-994 (2023). DOI: 10.1002/num.22913.
15. Darcy, H., Les Fontaines Publiques De La Ville De Dijon, Paris: Dalmont (1856). 
16. Mekheimer, Kh.S. "Non-linear peristaltic transport through a porous medium in an inclined planner channel", J Por Media, 6, pp. 189-201 (2003). DOI: 10.1615/JPorMedia.v6.i3.40.
17. Sheikholeslami, M., Hatami, M., and Ganji, D.D. "Analytical investigation of MHD nanofluid flow in a semi-porous channel", Powder Technol, 246, pp. 327- 336 (2013). DOI: 10.1016/j.powtec.2013.05.030.
18. Patil, P.M. and Chamkha, A. "Heat and mass transfer from mixed convection flow of polar fluid along a plate in porous media with chemical reaction", Int. J. Numer Methods Heat Fluid Flow, 23, pp. 899-926 (2013). DOI: 10.1108/HFF-03-2011-0060.
19. Gnaneswara Reddy, M. and Venugopal Reddy, K. "Impact of velocity slip and joule heating on MHD peristaltic  flow through a porous medium with chemical reaction", J. Niger Mathematical Society, 35, pp. 227-244 (2016). DOI: 10.1016/j.jnnms.2016.02.005.
20. Eldesoky, I.M., Abdelsalam, S.I., Wageeh A. El- Askary., et al. "The integrated thermal effect in conjunction with slip conditions on peristaltically induced particle-fluid transport in a catheterized pipe", J. Por. Media, pp. 695-713 (2020). DOI: 10.1615/JPorMedia. 2020025581.
21. Khan, Z.H., Makinde, O.D., Hamid, M., et al. "Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium", J. Magn.Magn. Mater., 499, p. 166241 (2020). DOI: 10.1016/j.jmmm.2019.166241.
22. Kamalakkannan, J., Dhanapal, C., Kothandapani, M., et al. "Peristaltic transport of non-Newtonian nanofluid through an asymmetric microchannel with electroosmosis and thermal radiation effects", Indian J Phys., 97, pp. 2735-2744 (2023). DOI: 10.1007/s12648-023-02636-9.
23. Abdelsalam, S.I., Magesh, A., Tamizharasi, P., et al. "Versatile response of a Sutterby nanofluid under activation energy through an asymmetric conduit: Hyperthermia therapy", Int. J. Numer. Methods Heat Fluid Flow, 34(2), pp. 408-428 (2023). DOI: 10.1108/HFF- 04-2023-0173.
24. Vijayaragavan, R., Tamizharasi, P., and Magesh, A. "Brownian motion and thermoporesis effects of nanofluid flow through the peristaltic mechanism in a vertical channel", J Por Media., 25(6), pp. 65-81 (2022). DOI: 10.1615/JPorMedia.2022041521.
25. Bhatti, M.M., Arain, M.B., Zeeshan, A., et al. "Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage", J. Energy Storage, 45, p. 103511 (2022). DOI: 10.1016/j.est.2021.103511.
26. Nadeem, S., Riaz, A., Ellahi, R., et al. "Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct", Appl. Nanosci., 4(5), pp. 613-624 (2014). DOI: 10.1007/s13204-013-0238-5.
27. Bhatti, M.M., Zeeshan, A., and Ellahi, R. "Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism", Microvasc Research, 110, pp. 32-42 (2017). DOI: 10.1016/j.mvr.2016.11.007.
28. Bhatti, M.M., Alamri, S.Z., Ellahi, R., et al. "Intrauterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer", J. Therm. Anal. Calorim., 144, pp. 2259-2267 (2021). DOI: 10.1007/s10973-020-10233-9.
29. Magesh, A. and Kothandapani, M. "Heat and mass transfer analysis on non-Newtonian fluid motion driven by peristaltic pumping in an asymmetric curved channel", Eur. Phys. J. Spec. Top., 230, pp. 1447-1464 (2021). DOI: 10.1140/epjs/s11734-021-00035-x.
30. Saleem, N., Akram, S., Afzal, F., et al. "Impact of velocity second slip and inclined magnetic field on peristaltic  flow coating with Jeffrey fluid in tapered channel", Coatings, 10, p. 30 (2020). DOI: 10.3390/coatings10010030.
31. Mishra, M. and Rao, A.R. "Peristaltic transport of a Newtonian  fluid in an asymmetric channel", Z. Angew Math Phys., 54, pp. 532-550 (2003). DOI: 10.1007/s00033-003-1070-7.
32. Abd Elmaboud, Y. and Abdelsalam, S.I. "DC/AC magnetohydrodynamic-micropump of a generalized Burger's  fluid in an annulus", Phys Scr., 94, p. 115209 (2019). DOI: 10.1088/1402-4896/ab206d.
33. Bhatti, M.M. and Abdelsalam, S.I. "Thermodynamic entropy of a magnetized Ree-Eyring particle-fluid motion with irreversibility process: A mathematical paradigm", J Appl Math Mech., 101(6), pp. 1-17 (2021). DOI: 10.1002/zamm.202000186.
Volume 31, Issue 8
Transactions on Mechanical Engineering (B)
May and June 2024
Pages 632-645
  • Receive Date: 30 November 2021
  • Revise Date: 28 January 2023
  • Accept Date: 24 January 2024