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Abstract. In this article, we studied the peristaltic motion of Je�rey uid with the porous
medium through an asymmetric channel under the inuence of velocity slip parameters.
Governing equations for non-Newtonian uid ow models, such as continuity, momentum,
energy, and mass transfer, are formulated. An externally applied inclined magnetic �eld
is also considered in the ow pattern. The lengthy governing equation of uid motion
is reduced by considering the approximation of longer wavelengths and smaller Reynolds
numbers. (Re! 0). The resulting governing equations are solved exactly. The graph shows
the results of the impact of various related uid parameters such as Hartmann number,
Darcy number, Je�rey uid parameter, amplitude ratio, chemical reactions of uid velocity,
temperature, concentration, pressure rise, pressure gradient, streamlines, etc. Finally, the
various waveforms of the trapping phenomenon are presented.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The peristaltic movement of non-Newtonian and New-
tonian uids has received particular attention for its
wide applications in physiology, engineering, and mod-
ern industry. In physiological terms, urine transport
to the bladder through the kidney, in the ingestion
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of food via the esophagus, capillaries and arterioles,
vasomotion of venues, in the unsanitary transport
of uids, in the movement of worms, transport of
toxic uids in the nuclear industry, roller, �nger
pumps. Latham made the initial attempt at peristaltic
transport [1]. Brown and Hung [2] investigated non-
linear two-dimensional peristaltic transportation using
experimental and computational methods. The peri-
staltic movement through an inclined tube of Herschel-
Bulkley uid has been described by Vajravelu et al. [3].
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Wang et al. [4] discussed the Johnson Segalman uid
through peristalsis in the deformable tube. A few
studies on the peristaltic mechanism of di�erent uid
patterns are presented [5{8].

The study of the peristaltic transport of MHD
(magnetohydrodynamic) has special attention due to
its numerous applications in electricity production, bio-
engineering, and medicine. In particular, it �nds utility
in blood pumps, generator sets, MHD compressor
operation, ow meters, radar systems, heat exchanger
construction, etc. MHD dust uid through Peristaltic
transport was described by Muthuraj et al. [9]. They
employed an analytic solution to solve the equations
of solids and liquids and reported that the appearance
of magnetic parameters on the transverse side creates
the drag force and a�ects the movement of the liquid in
the opposite direction, causing the velocity to decrease.
A few studies of peristaltic motion with MHD in
di�erent uids under di�erent boundary conditions are
presented [10{14].

Porous materials provide signi�cant advantages in
comparison with conventional construction. The non-
uniform ow of uids ensures that uids are uniformly
blended and also supports them in maintaining the
temperature distribution. Mathematically, the ow
rate in the porous medium is de�ned by Darcy's law
[15]. He indicated that the ow rate is directly pro-
portional to the pressure gradient and the ow cross-
section. Some studies based on the presence of porous
media across di�erent uid ow patterns in di�erent
ow geometries can be found in [16{25]. Nadeem et
al. [26] discussed the peristaltic movement of Je�rey
nanouid in rectangular ducts. Blood clots are a major
cause of various illnesses around the world, like heart
attacks; stroke is the main element behind death, as
addressed by Bhatti et al. [27]. Bhatti et al. [28]
discussed the mobility of intrauterine particles along
an asymmetric tapered conduit with heat transfer.
Magesh and Kothandapani [29] examined the power
and mass transfer analysis of the Johnson Segalmann
uid in an asymmetric channel.

All studies above, but few in the available lit-
erature, on the impact of velocity second slip condi-
tions on the peristaltic movement in a channel/tube.
According to available literature, no e�ort has been
made to investigate the inuence of velocity second
slip conditions through the peristaltic mechanism of
Je�rey uid in an inclined asymmetric channel. Thus,
the present study proposes to construct the work on
the impact of velocity second slip parameters of the
peristaltic movement of Je�rey uid. Additionally,
its consider has the impact of inclined magnetic �eld,
porous medium and chemical reaction. Mass and
energy transfer of the uid was also studied. The exact
solutions are derived from the simpli�ed governing
equations. The inuence of various uid parameters on

the ow characteristics is analyzed by means of graphic
illustrations.

2. Formulation of the present problem

We consider viscous, incompressible, unsteady two-
dimensional Je�rey uid induced by a peristaltic sys-
tem through an asymmetrical channel enclosed by
�h1(

_
X
0
;
_
t
0
) and �h2(

_
X
0
;
_
t
0
). The uid is considered

to drive electrically in the appearance of an inclined
magnetic �eld and porous medium. The ow generates
sinusoidal waves propagating at a non-varying speed
through the channel walls. Asymmetry of the channel
due to phase di�erence (see Figure 1) is represented
by [30,31]:

�h1 = �d2 � b1 cos

26642�
�
_
X
0 � c_t 0

�
�

+ �

3775 ;
�h2 = d1 + a1 cos

26642�
�
_
X
0 � c_t 0

�
�

3775 ; (1)

where d1 + d2, �, a1, b1 are the channel width, phase
di�erence, and amplitudes of the waves. � changes in
the range 0 � � � � the channel is symmetric at � = 0
(waves out of phase), and the waves are in phase at
� = �, � is the wavelength, and further b1, a1, d2, d1,
and � satis�es as the following relation is:

b21 + a2
1 + 2b1a1 cos� � (d2 + d1)2: (2)

The extra stress tensor �S and stress tensor ^� of the
Je�rey model are [25]:
^� = �PI + �S; (3)

Figure 1. Physical model of the channel.
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�S =
�

1 + �1
( _ + �2�) ;

where �1, �2, �, _, and � are the constants of Je�rey
uid, coe�cient of uid viscosity, and shear stress, and
the dot over the quantities denotes the derivative with
respect to time t. P is the pressure, and I is the identity
tensor.

2.1. Assumptions
Reynolds number: The gastrointestinal or reproduc-
tive tracts essentially have a creeping ow of uid. The
Reynolds number is, therefore, extremely low (1 for the
ureter, 10 for the gastrointestinal tract). Comparing
the momentum equation to the linear viscous forces,
the inertia term, which is proportional to the square of
velocity, can be neglected.

Wavelength: It should be noted that the vas
deferens radius is extremely small in comparison to
the wavelength. Because the wave number is typically
low, this situation can bene�t from the long wavelength
approximation theory [8].

2.2. Governing equations
The governing equations of non-Newtonian uids, such
as continuity, momentum, energy, and concentration
equations, are as follows [10,30]:
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where
_
V
0

and
_
U
0

are the velocities on the directions of
transverse and axial side, p;

_
t
0
; �; �; �0; cp; k1; Sij ;
; �t,

and k0 represent the pressure, time, density, viscosity,
electrical conductivity, speci�c heat at constant pres-
sure, permeability parameter, extra stress tensor, incli-
nation angle, thermal conductivity, chemical reaction
parameter, and B0 is the applied magnetic �eld.

The extra stress tensor (Sij) of the Je�rey uid
model is as follows [14,27,30]:
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The ow of the uid is unsteady in the wave
frame. So, it's converted into steady ow by the
following transform (wave frame to �xed frame) [7,12]:

v0 =
_
V
0

u0 =
_
U
0 � c;

y0 =
_
Y
0
; x0 =

_
X
0 � c_t 0: (12)

Introducing the dimensionless variables is as follows:
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x =
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In which Re = �cd1
� is Reynolds number, a and b are

amplitudes of the waves, � = d1
� is wave number,

E = c2
cp(T1�T0) is Eckert number, M =

q
�0
� B0d1 is

Hartmann number, Pr = �cp
�t is the Prandtl number,

Da = k1
d2

1
is Darcy number, Sr = �Dm(T1�T0)KT

�Tm(C1�C0) is Soret
number, Br = EPr is Brinkmann number, Sc = �

�Dm

is Schmidt number, 1 = �k0d2
1

� is the chemical reaction
parameter, and Fr = c2

gd1
is Froude number.

Applying Eqs. (12) and (13) into Eqs. (4){(11),
Eq. (4) is fully satis�ed. Under the assumptions of
lubrication theory, Eqs. (5){(8) becomes:
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The stream functions are:
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: (18)

Eqs. (14) and (16) in terms of stream function  can
be rewritten by:
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@2�
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@2�
@y2 � Sc1� = 0: (21)

From Eq. (15), we conclude that pressure is indepen-
dent of y. Now, eliminating the pressure gradient in
Eq. (19) and di�erentiating partially with respect to y,
we get:

@4 
@y4 �A2

1
@2 
@y2 = 0: (22)

The corresponding boundary conditions of slip condi-
tions are [30]:
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where F is the ux, ��1; ��2; �, and  represent �rst
order, second order, thermal, and concentration slip
parameters, respectively, and b; a; d, and � satis�es the
condition:

b2 + a2 + 2ba cos� � (1 + d)2:

3. Solution of the present ow pattern

The exact solution of Eqs. (20){(22) is obtained with
the help of Eqs. (23){(25):

 = c1 + c2y + c3 coshA1y + c4 sinA1y; (26)
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where ci, i = 1 � 8, are constants presented in the
appendix.

Substitution Eq. (26) into Eq. (19) gives the
pressure gradient in the axial direction:
@p
@x

=
1

1 + �1
A3

1c4 �A2
1 (c2 +A1c4 + 1) +

Re
Fr

sin�:
(29)

The pressure rise is calculated numerically per wave-
length by the following formula:

�p� =
2�Z
0

dp
dx
dx: (30)

The possible wave shapes namely, Sawtooth,
Trapezoidal, Triangular, and Square waveforms, are
modeled from the Fourier series as follows [8]:

� Sawtooth waveform:
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8
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1X
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h2 =�d�b 8
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:

� Trapezoidal waveform:
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32
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� Triangular waveform:
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8
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� Square waveform:

h1 = 1 + a
4
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1X
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(2l � 1)

;

h2 = �d� b 4
�

1X
j=1

(�1)j+1 cos[2�(2j � 1)x+ �]
(2j � 1)

:

4. Result and discussion

The graphical result of velocity, pressure rise, pressure
gradient, temperature, and concentration pro�les are
plotted using the computational mathematical software
Matlab, and the streamlines are drawn using Mathe-
matica.

4.1. Velocity pro�le
Figure 2(a){(d) presents variations of the velocity
pro�le (u) for changing the values of M (Hartmann
number), Da (Darcy number), �1 (Je�rey uid param-
eter), and � (phase di�erence). Figure 2(a) indicates
that when the Hartmann number increases, the velocity
of the uid decreases in the middle of the porous
channel. However, reverse behavior occurred near
the channel's walls. That means a larger magnetic
�eld declines the uid velocity in the axial direction
as Lorentz force plays retarding force in the uid
movement [32,33]. Figure 2(b) illustrates the impact of
Darcy number Da on the velocity pro�le. This �gure
suggests that increasing Da means diminishing the
drag force, and that causes enhance the axial velocity.
Figure 2(c) shows the impact of Je�rey uid parameter
�1. From this �gure, we concluded that the axial
velocity diminishes for greater �1. Also, it is observed
that in the case of Newtonian uid (�1 = 0), the
velocity is maximum. The uid velocity reduces near
the left wall of the channel when the phase angle �
increases, as presented in Figure 2(d).

4.2. Pressure rise and pressure gradient
The pumping characteristics against the dimensionless
ow rate for changing the values of Hartmann number
M , Darcy number Da, Je�rey uid parameter �1,
and Frude number Fr are presented in Figure 3(a){
(d). Pressure rise is enhanced in the retrograde
region (� < 0;�p� > 0) and decreases in co-pumping
region (� > 0;�p� < 0) for increasing of Hartmann
number and �1. But in the peristaltic pumping
region (� > 0;�p� > 0), pressure rise increased up
to � 2 [0; 0:1] and diminished for � > 0:1, but
opposite behavior is observed for large values of Da
(Darcy number). Pressure rise decreases throughout
the region (Retrograde region, pumping region, and
co-pumping region) when the values of Frude number
Fr are enhanced. Pressure gradient for di�erent
values of M , Je�rey uid parameter �1, and Frude
number Fr are illustrated in Figure 4(a){(c). Pressure
gradient dp

dx rises throughout the channel for large
values of M and Frude number (see Figure 4(a) and
(c)). The pressure gradient against the Je�rey uid
parameter �1 is represented in Figure 4(b). From
this �gure, we observe that the pressure rise dimin-
ishes when x 2 [0:6; 0:8] and enhances rest of the
region.

4.3. Heat and mass transfer
Variations of temperature distribution for Hartmann
number M , Darcy number Da Je�rey uid parameter
�1, slip parameter �, and Brinkmann number Br are
illustrated in Figure 5(a){(e). For greater values of
M (Hartmann number), the temperature of the uid
increases (see Figure 5(a)). This �gure shows that
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Figure 2. Velocity distribution for (a) � = �
6 , �1 = 0:2, Da = 0:4; (b) � = �

6 , �1 = 0:2, M = 0:2; (c) � = �
6 , Da = 2,

M = 0:5, (d) Da = 2, �1 = 0:5, M = 0:5; and other values are d = 1:1, a = 0:6, x = 0:1, b = 0:5, ��1 = 0:002, ��2 = 0:003,
� = 1:9, l = �

4 .

Figure 3. Variation of pressure rise (a) �1 = 0:7, Da = 0:2, Fr = 0:6; (b) �1 = 0:7, Fr = 0:6, M = 1:5; (c) Da = 1,
Fr = 0:6, M = 1:5; (d) Da = 0:2, �1 = 0:7, M = 2 and other values are d = 1:1, a = 0:4, b = 0:3, � = �

6 , ��1 = 0:4,
��2 = 0:5, l = �

6 , Re = 0:4, � = 0:2.
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Figure 4. Variation of pressure gradient (a) Fr = 0:5, �1 = 0:7; (b) Fr = 0:6, M = 1:5, (c) M = 1:5, Fr = 0:6 and other
values are d = 1:1, a = 0:4, b = 0:3, � = �

6 , ��1 = 0:4, ��2 = 0:5, � = 0:2, l = �
6 , Da = 0:2, Re = 0:3.

Figure 5. Temperature distribution for (a) �1 = 0:3, Da = 0:2, � = Br = 0:1, (b) �1 = 0:3, M = 2, � = Br = 0:1, (c)
Da = 0:7, M = 1:5, � = Br = 0:1, (d) Da = 0:2, M = 2, �1 = 0:5, Br = 0:1, (e) M = 2, Da = �1 = 0:5, � = 0:01 and
other values are d = 1:1, a = 0:4, x = 0:1, b = 0:5, � = �

6 , ��1 = 0:01, ��2 = 0:02, � = 1:9, l = �
4 .
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Figure 6. Concentration distribution for (a) a = 0:4, Sr = 0:5, Sc = 1,  = 0:1; (b) Sc = 1, Sr = 0:5,  = 0:1, 1 = 1, (c)
a = 0:4, Sr = 0:5,  = 0:1, 1 = 1, (d) a = 0:4, Sc = 1,  = 0:1, 1 = 1 and other values are d = 1:1, b = 0:5, � = �

6 ,
x = 0:1, ��1 = 0:01; ��2 = 0:02, � = 1:9, �1 = 3, l = �

4 , M = 2, Da = 0:2, � = 0:01, Br = 0:5:

the temperature of the magnetohydrodynamic uid is
larger when compared to hydrodynamic uid. The
existence of a porous media compensates for the energy
dissipation that raises the uid temperature through
internal resistance. Greater values of Da indicate a
decrease in the uid temperature. The temperature
of the uid increases when �1 and Br increase (see
Figure 5(c) and (e)). The temperature of the uid
decreases when the value of slip parameter � increases
(see Figure 2(d)).

Figure 6(a) and (b) was developed to demonstrate
how the amplitude (a) and parameter of a chemical
reaction (1) a�ect the concentration pro�le. The con-
centration of the uid decreases when chemical reac-
tion parameters (1) and amplitude (a) are enhanced.
Chemical reaction boosts the rate of mass transfer
across interfaces, which reduces concentration. The
concentration decreases as the Schmidt number (Sc)
increases, as shown in Figure 6(c). Schmidt number
is used to characterize uid ows in which there are
simultaneous momentum and mass di�usion convection
processes. The density of the uid particles reduces as
the Schmidt number (Sc) rises in value. It helps the

particles go away faster, thus reducing concentration.
For rising values of the Soret number (Sr), a decrease
in concentration is seen (see Figure 6(d)).

4.4. Trapping phenomenon
Trapping is an important mechanism for analyzing
the peristaltic uid ow pattern. Streamlines for
di�erent values of M and �1 are displayed in Figures 7
and 8. Figure 7 depicts that the size of trapped
bolus diminishes in the lower wall for increasing the
Hartmann number (M). In both walls of the channel
trapped bolus size decreases for large values of �1.
Finally, the trapped bolus disappears in both walls for
increasing the values of Je�rey uid parameter �1 see
Figure 8. Di�erent waveforms of the streamlines, such
as sawtooth wave, square wave, trapezoidal wave, and
triangular wave, are presented in Figure 9. Present
study is validated with the previous study conducted
by Misra and Rao [31] with (M = 0; Da ! 1; � =
0). From this �gure, we conclude that the present
study is in accordance with the existing literature (see
Figure 10).
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Figure 7. Streamlines for (a)M = 0; (b)M = 1; (c)M = 2; (d)M = 3 and other values are d = 1:1, a = 0:4, b = 0:5,
� = �

12 , x = 0:1, ��1 = 0:01, ��2 = 0:02, � = 1:9, �1 = 0:2, l = �
4 , Da = 0:3.

5. Conclusion

In this study, we investigated the inuence of velocity
slip conditions on the peristaltic motion of the Je�rey
uid in the asymmetric channel with porous medium,
magnetic �eld, and chemical reactions. The governing
equations are reduced long wavelength and the small
Reynolds number approximations. The resulting gov-
erning equations are solved by the exact solution. The
key �ndings are as follows:

1. The axial velocity decreases for increasing M , �1,
and �, but the opposite trend is observed for
increasing Da;

2. The pressure rise rises in the pumping region for
greater values of M , �1, and decreases for Da;

3. Pressure rise decreases throughout the region for
increasing Fr;

4. The temperature rises when increasing M , �1,
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Figure 8. Streamlines for (a) �1 = 0; (b) �1 = 1; (c) �1 = 2, and (d) �1 = 3 other values are d = 1:1, a = 0:4, b = 0:3,
� = �

18 , x = 0:1, ��1 = 0:01, ��2 = 0:02, � = 1:9, M = 1:5, l = �
6 , Da = 0:2.

and Br, but the opposite trend is observed for
increasing Da and �;

5. The concentration of the uid diminished for in-
creasing 1, a, Sc, and Sr;

6. The size of the trapped bolus diminishes for larger
values of M and �1.

Nomenclature

Symbols

�h1;
*
h2 Upper and lower walls [L]

u = (
_
U
0
;
_
V
0
) Velocity vector on (

_
X
0
;
_
Y
0
)

direction
I Identity tensor
B0 Magnetic �eld vector
T Temperature of uid
S Cauchy stress tensor
d1; d2 Channel wall's constant height [L]
a1; b1 Wave amplitudes [L]
c Wave speed [L/T]
_
t
0

Time [T]
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Figure 9. Streamlines for (a) Sawtooth waveform, (b) Square waveform, (c) Triangular waveform, and (d) Trapezoidal
waveform.

Figure 10. Validation with Misra and Rao [31].
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P Pressure [ML/T2]

cp Speci�c heat [ML2/T2K]
k1 Permeability parameter
T0; T1 Temperature at lower and upper wall

[K]
Re Reynolds number
Da Darcy number
Fr Frude number
Pr Prandtl number
M Hartmann number
E Eckert number
Br Brinkmann number
F Flow rate [M/L3]

Greek symbols

�1; �2 Constants of Je�rey uid
_; � Shear stress
� Wavelength [L]

� Density [M/L3]
� Dynamic viscosity
� Electrical conductivity
� Wave number
 Stream function
�t Thermal conductivity [ML/T3K]
� Inclination angle
��1; ��2 First, second order slip parameters
�� Thermal slip parameter
1 Chemical reaction parameter
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Appendix

A2
1 = (1 + �1)

�
M2cos2� +

1
Da

�
;

A2 = A1 sinhA1h1 +
�1

(1 + �1)
A2

1 coshA1h1

+
�2

(1 + �1)
A3

1 sinhA1h1;

A3 = A1 coshA1h1 +
1

(1 + �1)

�
�1A2

1 sinhA1h1

+�2A3
1 coshA1h1

�
;

A4 = A1 sinhA1h2 � 1
(1 + �1)

�
�1A2

1 coshA1h2

+�2A3
1 sinhA1h2

�
;

A5 = A1 coshA1h2 � 1
(1 + �1)

�
�1A2

1 sinhA1h2

+�2A3
1 coshA1h2

�
;

A6 = h2 � h1; A7 = coshA1h2 � coshA1h1;

A8 = sinhA1h2 � sinhA1h1; A9 = A4 �A2;

A10 = A5 �A3; A11 = A7 �A4A6;
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A12 = A8 �A5A6; c4 =
(F +A6)A9

A12A9 �A10A11
;

c3 = �c4A10

A9
;

c2 = �1� c3A4 � c4A5;

c1 =
F
2
� c2h2 � c3 coshA1h2 � c3 sinhA1h2;

A14 = �A13

�
c23
4

+
c24
4

+
c3c4

2

�
;

A15 = �A13

�
c23
4

+
c24
4
� c3c4

2

�
;

A16 = �2A13

�
c23
4
� c24

4

�
;

A17 =
A14e2A1h1

4A2
1

+
A15e�2A1h1

4A2
1

+
A16h2

1
2

+�
�
A14e2A1h1

2A1
� A15e�2A1h1

2A1
+A16h1

�
;

A18 =
A14e2A1h2

4A2
1

+
A15e�2A1h2

4A2
1

+
A16h2

2
2

��
�
A14e2A1h2

2A1
� A15e�2A1h2

2A1
+A16h2

�
;

c6 =
1 +A17 �A18

A6 � 2�
; c5 = � (A17 + c6 (h1 + �)) ;

l1 =cosh
�p

Sc1h1

�
+ 
p
Sc1 sinh

�p
Sc1h1

�
;

l2 =sinh
�p

Sc1h1

�
+ 
p
Sc1 cosh

�p
Sc1h1

�
;

l3 = �ScSr�
A14e2A1h1(1 + 2A1) +A15e�2A1h1(1� 2A1)

4A2
1 � Sc1

� A16

Sc1

�
;

l4 =cosh
�p

Sc1h2

�
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p
Sc1 sinh

�p
Sc1h2

�
;

l5 = sinh
�p

Sc1h2

�
+ 
p
Sc1 cosh

�p
Sc1h2

�
;

l6 =�ScSr�
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4A2
1 � Sc1
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�
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c7 = �(l2c8 + l3)=l1;
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l1l5 � l2l4 :
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