References:
Gul, T., Nasir, S., Berrouk, A.S., et al. "Simulation of the water-based hybrid nano fluids flow through a porous cavity for the applications of the heat transfer", Scientific Reports, 13(1), p. 7009 (2023). https://doi.org/10.1038/s41598-023-33650-w.
2. Nasir, S., Berrouk, A.S., Aamir, A., et al. "Features of flow and heat transport of MoS2+ GO hybrid nano fluid with nonlinear chemical reaction, radiation and energy source around a whirling sphere", Heliyon, 9(4), pp. 1-13 (2023). https://doi.org/10.1016/j.heliyon.2023.e15089.
3. Nasir, S., Berrouk, A.S., Aamir, A., et al. "Entropy optimization and heat flux analysis of Maxwell nano fluid configurated by an exponentially stretching surface with velocity slip", Scientific Reports, 13(1), p. 2006 (2023). https://doi.org/10.1038/s41598-023-29137-3.
4. Nasir, S., Berrouk, A.S., Aamir, A., et al. "Significance of chemical reactions and entropy on Darcy-forchheimer flow of H2O and C2H6O2 convening magnetized nanoparticles". International Journal of Thermo fluids, 17, 100265 (2023). https://doi.org/10.1016/j.ijft.2022.100265.
5. Nasir, S., Berrouk, A.S., Tassaddiq, A., et al. "Impact of entropy analysis and radiation on transportation of MHD advance nano fluid in porous surface using Darcy-Forchheimer model", Chemical Physics Letters, 811, 140221 (2023). https://doi.org/10.1016/j.cplett.2022.140221.
6. Nasir, S., Sirisubtawee, S., Juntharee, P., et al. "Heat transport study of ternary hybrid nano fluid flow under magnetic dipole together with nonlinear thermal radiation", Applied Nanoscience, 12(9), pp. 2777-2788 (2022). https://doi.org/10.1007/s13204-022-02583-7.
7. Alnahdi, A.S., Nasir, S., and Gul, T. "Ternary Casson hybrid nano fluids in convergent/divergent channel for the application of medication", Thermal .Science, 27(Spec. issue 1), pp. 67-76 (2023). https://doi.org/10.2298/TSCI23S1067A.
8. Alnahdi, A.S., Nasir, S., and Gul, T. "Blood-based ternary hybrid nano fluid flow-through perforated capillary for the applications of drug delivery", Waves in Random and Complex Media, pp. 1-19 (2022). https://doi.org/10.1080/17455030.2022.2134607.
9. Zeeshan, A., Hussain, F., Ellahi, R., et al. "A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel", Journal of Molecular Liquids, 286, 110898 (2019). https://doi.org/10.1016/j.molliq.2019.110898.
10. Ellahi, R., Zeeshan, A., Hussain, F., et al. "Two-phase couette flow of couple stress fluid with temperature dependent viscosity thermally affected by magnetized moving surface", Symmetry, 11(5), p. 647 (2019). https://doi.org/10.3390/sym11050647.
11. Bhatti, M.M., Zeeshan, A., Asif, M.A., et al. "Nonuniform pumping flow model for the couple stress particle- fluid under magnetic effects", Chemical Engineering Communications, 209(8), pp. 1058-1069 (2022). https://doi.org/10.1080/00986445.2021.1940156.
12. Afzal, Q., Akram, S., Ellahi, R., et al. "Thermal and concentration convection in nano fluids for peristaltic flow of magneto couple stress fluid in a nonuniform channel", Journal of Thermal Analysis and Calorimetry, 144, pp. 2203-2218 (2021). https://doi.org/10.1007/s10973-020-10340-7.
13. Khan, A.A., Bukhari, S.R., Marin, M., et al. "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Research, 50(11), pp. 1-14 (2019). https://doi.org/10.1615/HeatTransRes.2018028397.
14. Ramesh, K., Mebarek-Oudina, F., Ismail, A.I., et al. "Computational analysis on radiative non-Newtonian Carreau nano fluid flow in a microchannel under the magnetic properties", Scientia Iranica, 30(2), pp. 376-390 (2023). https://doi.org/10.24200/sci.2022.58629.5822.
15. Stokes, V.K. "Couple stresses in fluids", Phys. Fluids, 9, pp. 1709-1715 (1966).
16. Rubenstein, D.A. and Yin, W.M.D. "Frame Bio fluid Mechanics", Academic Press, Wyman Street, Waltham, USA (2012).
17. Singh, C. "Lubrication theory for couple stress fluids and its application to short bearings", Wear, 80(3), pp. 281-290 (1982). https://doi.org/10.1016/0043- 1648(82)90256-3.
18. Srivastava, L.M. "Flow of couple stress fluid through stenotic blood vessels", Journal of Biomechanics, 18(7), pp. 479-485 (1985). https://doi.org/10.1016/0021-9290(85)90662-1.
19. Soundalgekar, V.M. and Chaturani, P. "Effects of couple-stresses on the dispersion of a soluble matter in a pipe flow of blood", Rheologica Acta, 19(6), pp. 710-715 (1980). https://doi.org/10.1007/BF01521862.
20. Hsu, C.H., Lin, J.R., and Chiang, H.L. "Combined effects of couple-stresses and surface roughness on the lubrication of short journal bearings", Ind. Lubr. Tribol., 55, pp. 233-243 (2003). https://doi.org/10.1108/00368790310488896.
21. Sunil Devi, R. and Mahajan, A. "Global stability for thermal convection in a couple stress fluid", Int. Commun. Heat Mass Transf., 38, pp. 938-942 (2011). https://doi.org/10.1016/j.icheatmasstransfer. 2011.03.030.
22. Shivakumara, I.S. "Onset of convection in a couple-stress fluid-saturated porous medium: effects of nonuniform temperature gradients", Arch. Appl. Mech., 80, pp. 949-957 (2010). https://doi.org/10.1007/s00419-009-0347-5.
23. Shivakumara, I.S., Sureshkumar, S., and Devaraju, N. "Coriolis effect on thermal convection in a couple-stress fluid-saturated rotating rigid porous layer", Arch. Appl. Mech., 81, pp. 513-530 (2011). https://doi.org/10.1007/s00419-010-0425-8.
24. Gaikwad, S.N. and Kouser, S. "Double diffusive convection in a couple stress fluid saturated porous layer with internal heat source", Int. J. Heat Mass Transf., 78, pp. 1254-1264 (2014). https://doi.org/10.1016/j.ijheatmasstransfer. 2014.07.021.
25. Shivakumara, I.S. and Naveen Kumar, S.B. "Linear and non-linear triple diffusive convection in a couple stress fluid layer", Int. J. Heat Mass Transf., 68, pp. 542-553 (2014). https://doi.org/10.1016/j.ijheatmasstransfer. 2013.09.051.
26. Srivastava, A.K. and Bera, P. "Influence of chemical reaction on stability of thermosolutal convection of couple-stress fluid in a horizontal porous layer", Transp. Porous Media, 97(2), pp. 161-184 (2013). https://doi.org/10.1007/s11242-012-0116-8.
27. Malashetty, M.S. and Biradar, B.S. "The onset of double diffusive reaction- convection in an anisotropic porous layer", Phys. Fluids, 23, 064102 (2011). https://doi.org/10.1063/1.3598469.
28. Ravi, R., Kanchana, C., and Siddheshwar, P.G. "Effects of second diffusing component and cross diffusion on primary and secondary thermoconvective instabilities in couple stress liquids", Appl. Math. Mech. -Engl. Ed., 38(11), pp. 1579-1600 (2017). https://doi.org/10.1007/s10483-017-2280-9.
29. Wollkind, D.J. and Frisch, H.L. "Chemical instabilities: I. A heated horizontal layer of dissociating fluid", The Physics of Fluids, 14(1), pp. 13-18 (1971). https://doi.org/10.1063/1.1693263.
30. Wollkind, D.J. and Frisch, H.L. "Chemical instabilities. III. Nonlinear stability analysis of a heated horizontal layer of dissociating fluid", The Physics of Fluids, 14(3), pp. 482-487 (1971). https://doi.org/10.1063/1.1693460.
31. Bdzil, John B. and Frisch, H.L. "Chemically driven convection", The Journal of Chemical Physics, 72(3), pp. 1875-1886 (1980). https://doi.org/10.1063/1.439332.
32. Steinberg, V. and Brand, H. "Convective instabilities of binary mixtures with fast chemical reaction in a porous medium", The Journal of Chemical Physics, 78(5), pp. 2655-2660 (1983). https://doi.org/10.1063/1.445024.
33. Steinberg, V. and Brand, H.R. "Amplitude equations for the onset of convection in a reactive mixture in a porous medium", The Journal of Chemical Physics, 80(1), pp. 431-435 (1984). https://doi.org/10.1063/1.446466.
34. Gatica, J.E., Viljoen, H.J., and Hlavacek, V. "Interaction between chemical reaction and natural convection in porous media", Chemical Engineering Science, 44(9), pp. 1853-1870 (1989). https://doi.org/10.1016/0009-2509(89)85127-9.
35. Pritchard, D. and Richardson, C.N. "The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer", Journal of Fluid Mechanics, 571, pp. 59-95 (2007). https://doi.org/10.1017/S0022112006003211.
36. Wang, S. and Tan, W. "The onset of Darcy-Brinkman thermosolutal convection in a horizontal porous media", Physics Letters A, 373(7), pp. 776-780 (2009). https://doi.org/10.1016/j.physleta.2008.12.056.
37. Hill, A.A. and Morad, M.R. "Convective stability of carbon sequestration in anisotropic porous media". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2170), 20140373 (2014). https://doi.org/10.1098/rspa.2014.0373.
38. Ward, T.J., Cliffe, K.A., Jensen, O.E. et al. "Dissolution-driven porous-medium convection in the presence of chemical reaction", Journal of Fluid Mechanics, 747(20T), pp. 316-349 (2014). https://doi.org/10.1017/jfm.2014.149.
39. Sulaimi, A.B. "The energy stability of Darcy thermosolutal convection with reaction", International Journal of Heat and Mass Transfer, 86, pp. 369-376 (2015). https://doi.org/10.1016/j.ijheatmasstransfer. 2015.03.007.
40. Gautam, K. and Narayana, P.A.L. "On the stability of carbon sequestration in an anisotropic horizontal porous layer with a first-order chemical reaction", Proceedings of the Royal Society A, 475(2226), 20180365 (2019). https://doi.org/10.1098/rspa.2018.0365.
41. Reddy, G.S.K. and Ragoju, R. "Thermal instability of a Maxwell fluid saturated porous layer with chemical reaction", Spec. Top. Rev. Porous Media Int. J., 13, pp. 33-47 (2022). https://doi.org/10.1615/SpecialTopicsRevPorousMedia. 2021037410.
42. Reddy, G.S.K., Koteswararao, N.V., Ravi, R., et al. "Dissolution-driven convection in a porous medium due to vertical axis of rotation and magnetic field", Mathematical and Computational Applications, 27(3), p. 53 (2022). https://doi.org/10.3390/mca27030053.
43. Ahlers, G., Grossmann, S., and Lohse, D. "Heat transfer and large scale dynamics in turbulent Rayleigh- Benard convection", Rev. Modern Phys., 81, p. 503 (2009). https://doi.org/10.1103/RevModPhys.81.503.
44. Lohse, D. and Xia, K.Q. "Small-scale properties of turbulent Rayleigh-Benard convection", Annu. Rev. Fluid Mech., 42, pp. 335-364 (2010). https://doi.org/10.1146/annurev.fluid.010908.165152.
45. Hassler, D., Dammasch, I., Lemaire, P., et al. "Solar wind out flow and the chromospheric magnetic network", Science, 283(5403), pp. 810-813 (1999). https://doi.org/10.1126/science.283.5403.810.
46. Johnston, J.P. "Effects of system rotation on turbulence structures: a review relevant to turbomachinery flows", Int. J. Rot. Mach., 4(2), pp. 97-112 (1998). https://doi.org/10.1155/S1023621X98000098.
47. Hartmann, D.L., Moy, L.A., and Fu, Q. "Tropical convection and the energy balance at the top of the atmosphere", J. Clim., 14, pp. 4495- 4511 (2001). https://doi.org/10.1175/1520- 0442(2001)014<4495:TCATEB>2.0.CO;2.
48. Marshall, J. and Schott, F. "Open-ocean convection: observations, theory, and models", Rev. Geophys., 37, pp. 1-64 (1999). https://doi.org/10.1029/98RG02739.
49. Babu, A.B., Reddy, G.S.K., and Tagare, S.G. "Nonlinear magneto convection due to horizontal magnetic field and vertical axis of rotation due to thermal and compositional buoyancy", Results in Physics, 12, pp. 2078-2090 (2019). https://doi.org/10.1016/j.rinp.2019.02.022.
50. Benerji Babu, A., Reddy, G.S.K., and Tagare, S.G. "Nonlinear magnetoconvection in a rotating fluid due to thermal and compositional buoyancy with anisotropic diffusivities", Heat Transfer-Asian Research, 49(1), pp. 335-355 (2020). https://doi.org/10.1002/htj.21615.
51. Rahmstorf, S. "The thermohaline ocean circulation: a system with dangerous thresholds?" Clim. Change, 46, pp. 247-256 (2000). https://publications.pikpotsdam. de/pubman/item/item-11819.
52. Chandrasekhar, S. "Hydrodynamic and hydromagnetic stability", Courier Corporation (2013).