Synthesis of hybrid Se-SiNPs nanoparticle for the studies of cellular toxicity against breast cancer cell line MCF-7

Document Type : Research Article

Authors

1 School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India-382030

2 School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India-382030

Abstract

A hybrid nanocomposite of biologically compatible silica nanoparticles (SiNPs) coated with selenium nanoparticles (SeNPs) was developed and evaluated for cytotoxicity on the breast cancer cell line using MTT assay methods. The hybrid nanoparticles were characterized by DLS, XRD and SEM spectroscopy. The size and size distribution of SiNPs and composite Se-SiNPs nanoparticles determined by DLS experiment are SiNPs and Se-SiNPs 23.85 and 89.9 nm in diameter respectively. The Se-SiNPs hybrid nanomaterials showed higher cytotoxicity than pure SiNPs against the breast cancer cell line MCF-7. When compared to SiNPs, composite Se-SiNPs suppressed the growth of the breast cancer cell line MCF-7.

Keywords

Main Subjects


References:
1. Nurgali, K., Jagoe, R.T., and Abalo, R. “Editorial-adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae?”, Front Pharmacol., 9, Article 245 (2018). https://doi.org/10.3389/fphar.2018.00245.
2. Livshits, Z., Rao, R.B., and Smith, S.W. “An approach to chemotherapy-associated toxicity”, Emerg. Med. Clin. North Am., 32(1), pp. 167-203 (2014). https://doi.org/10.1016/j.emc.2013.09.002.
3. Dougherty, P.M., Cata, J.P., Cordella, J.V., et al. “Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients”, Pain , 109, pp. 132–142 (2004). https://doi.org/10.1016/j.pain.2004.01.021.
4.Zundelevich, A., Dadiani, M., Kahana-Edwin, S., et al.“ESR1 mutations are frequent in newly diagnosedmetastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis”, BreastCancer Research, 22, article 532 (2020). https://doi.org/10.1186/s13058-020-1246-5.
5.Shrivastava, S. and Dash, D. “Applying nanotechnology to human health: Revolution in biomedical sciences”, J.Nanotech., 2009, 184702, 14 pages (2009).https://doi.org/10.1155/2009/184702.
6.Bera, S. and Mondal, D. “A role for ultrasound in thefabrication of carbohydrate-supported nanomaterials”,Journal of Ultrasound, 22, pp. 131-156 (2019). https://doi.org/10.1007/s40477-019-00363-8.
7.Bera, S. and Mondal, D., A book chapter “Chapter-7Stimuli-sensitive nanomaterials for antimicrobial drugdelivery”, in the Book: “Drug targeting and stimulisensitive drug delivery systems”, pp. 271-302 (2018).Edited by Grumezescu, A.M., Elsevier Inc. ISBN9780128136904. https://doi.org/10.1016/B978-0-12-813689-8.00007-0.
8.Desai, S.K., Bera, S., Singh, M., et al. “Multifacetedsynthesis, properties and applications of polyurethanesand its composites”, Journal of Applied PolymerScience, 134, 44463 (2017). https://doi.org/10.1002/app.44463.
9.Li, W., Corke, H., and Beta, T., “Kinetics of hydrolysisand changes in amylose content during preparation ofmicrocrystalline starch from high-amylose maizestarches”, Carbohydr. Polym., 69, pp. 398-405 (2007).https://doi.org/ 10.1016/j.carbpol.2006.12.022.
10.Zhang, X.-F., Liu, Z.-G., Shen, W., et al. “SilverNanoparticles: Synthesis, Characterization, Properties,Applications, and Therapeutic Approaches”, Int. J. Mol.Sci., 17, Article 1534 (2016). https://doi.org/ 10.3390/ijms17091534.
11.Dagogo-Jack, I. and Shaw, A.T. “Tumour heterogeneityand resistance to cancer therapies”, Nat. Rev. Clin.Oncol., 15(2), pp. 81–94 (2018). https://doi.org/10.1038/nrclinonc.2017.166.
12.Martinelli, C., Pucci, C., and Ciofani, G.“Nanostructured carriers as innovative tools for cancerdiagnosis and therapy”, APL Bioeng, 3, 011502 (2019).https://doi.org/10.1063/1.5079943.
13.Gopi, M., Pearlin, B., Kumar, R.D., et al. “Role ofnanoparticles in animal and poultry nutrition: modes ofaction and applications in formulating feed additivesand food processing”, Int. J. Pharmacol., 13(7), pp. 724-731 (2017). https://doi.org/10.3923/ijp.2017.724.731.
14.Bhattacharyya, A., Mohammad, F., Naika, H.R., et al.“Nanoparticles: alternatives against drug-resistant pathogenic microbes”, Res. J. Nanosci. Nanotech., 5(2), pp. 27-43 (2015). https://doi.org/10.3390/molecules21070836.
15.Li, Y., Lin, Z., Zhao, M., et al. “Multifunctionalselenium nanoparticles as carriers of HSP70 siRNA toinduce apoptosis of HepG2 cells”, Int. J.Nanomedicine, 11, pp. 3065–3076 (2016). https://doi.org/10.2147/IJN.S109822.
16.Li, Y., Guo, M., Lin, Z., et al. “Polyethylenimine-functionalized silver nanoparticle-based co-delivery ofpaclitaxel to induce HepG2 cell apoptosis”, Int. J.Nanomedicine, 11, pp. 6693–6702 (2016). https://doi.org/10.2147/IJN.S122666.
17.Li, Y., Lin, Z., Guo, M., et al. “Inhibitory activity ofselenium nanoparticles functionalized with oseltamiviron H1N1 influenza virus”, Int. J. Nanomedicine, 12, pp.5733–5743 (2017). https://doi.org/10.2147/IJN.S140939.
18.Xia, Y., Wang, C., Xu, T., et al. “Targeted delivery ofHES5-siRNA with novel polypeptide-modifiednanoparticles for hepatocellular carcinoma therapy”,RSC Adv., 8(4), pp. 1917–1926 (2018). https://doi.org/10.1039/c7ra12461a.
19.Xia, Y., Xu, T., Wang, C., et al. “Novel functionalizednanoparticles for tumor-targeting co-delivery ofdoxorubicin and siRNA to enhance cancer therapy”, Int.J. Nanomedicine, 13, pp. 143–159 (2018). https://doi.org/10.2147/IJN.S148960.
20.Kang, Z., Liu, Y., Lee, S.-T. “Small-sized siliconnanoparticles: new nanolights and nanocatalysts”,Nanoscale, 3, pp. 777-791 (2011). https://doi.org/10.1039/C0NR00559B.
21.Azizi, M., Ghourchian, H., Yazdian, F., et al. “Cytotoxiceffect of albumin coated copper nanoparticle on humanbreast cancer cells of MDA-MB 231”, PLoS ONE,12(11), e0188639 (2017). https://doi.org/10.1371/journal.pone.0188639.
22.Vetchinkina, E., Loshchinina, E., Kupryashina, M., et al. “Green synthesis of nanoparticles with extracellular andintracellular extracts of basidiomycetes”, Peer J., 6,e5237 (2018). https://doi.org/10.7717/peerj.5237.
23.Soenen, S.J., Manshian, B., Montenegro, J.M., et al.“Cytotoxic effects of gold nanoparticles: amultiparametric study”, ACS Nano, 6(7), pp. 5767-5783(2012). https://doi.org/10.1021/nn301714n.
24.Krishna, G., Srileka, V., Singara Charya M.A., et al.“Biogenic synthesis and cytotoxic effects of silvernanoparticles mediated by white rot fungi”, Heliyon, 7,e06470 (2021). https://doi.org/10.1016/j.heliyon.2021.e06470.
25.Kim, I.Y., Kwak, M., Kim, J., et al. “Comparative studyon nanotoxicity in human primary and cancer cells”,Nanomaterials, 12(6), 993 (2022). https://doi.org/10.3390/nano12060993.
26.Cha, K.E. and Myung, H. “Cytotoxic effects ofnanoparticles assessed in vitro and in vivo”, J.Microbiol. Biotechnol., 17(9), pp. 1573-1578 (2007). PMID: 18062241. 27. Khanna, P., Ong, C., Bay, B.H., et al. “Nanotoxicity: An interplay of oxidative stress, inflammation and cell death”, Nanomater., 5, pp. 1163-1180 (2015). https://doi.org/10.3390/nano5031163.
28. Ahire, J.H., Chambrier, I., Mueller, A., et al. “Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells”, ACS Appl. Mater Interfaces, 5(15), pp. 7384-91 (2013). https://doi.org/10.1021/am4017126.
29. Sun, J., Liu, Y., Ge, M., et al. “A distinct endocytic mechanism of functionalized-silica nanoparticles in breast cancer stem cells”, Sci. Rep., 7, 16236 (2017). https://doi.org/10.1038/s41598-017-16591-z.
30. Kumar, A., Bera, S., Singh, M., et al. “Agrobacterium-assisted selenium nanoparticles: molecular aspect of antifungal activity”, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9, 015004 (2018). https://doi.org/10.1088/2043-6254/aa9f4a.
31. Cassidy, C. Singh, V., Grammatikopoulos, P., et al. “Inoculation of silicon nanoparticles with. silver atoms”, Sci. Rep., 3, 3083 (2013). https://doi.org/10.1038/srep03083.
32. Tugarova, A.V., Mamchenkova, P.V., Dyatlova, Y.A., et al. “FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium azospirillum thiophilum”, Spectrochim. Acta A Mol. Biomol. Spectrosc., 192, pp. 458–463 (2018). https://doi.org/10.1016/j.saa.2017.11.050.
33. Le, V.H., Thuc, C.N.H., and Thuc, H.H. “Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method”, Nanoscale Res. Lett., 8(1), Article 58 (2013). https://doi.org/10.1186/1556-276X-8-58.
34. Stöber, W., Fink, A., and Bohn, E. “Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Sci., 26, pp. 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5.
35. Kim, K.-M., Kim, H.M., Lee, W.-J., et al. “Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica”, Int. J. Nanomed., 9, pp. 29-40 (2014). https://doi.org/10.2147/IJN.S57922.
36. Wells, M.J.M. “Conductivity-dependent flow field-flow fractionation of fulvic and humic acid aggregates”, Chromatogr., 2, pp. 580-593 (2015). https://doi.org/10.3390/chromatography2030580.
37. Bhattacharjee, S. “DLS and zeta potential - What they are and what they are not?” J. Control Release, 235, pp. 337-351 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017.
38. Amirthalingam, T., Kalirajan, J., and Chockalingam, A. “Use of silica-gold core shell structured nanoparticles for targeted drug delivery system”, J. Nanomed. Nanotech., 2(6), 1000119 (2011). https://doi.org/10.4172/2157-7439.1000119.
39. Rovani, S., Santos, J.J., Corio, P., et al. “Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash”, ACS Omega, 3, pp. 2618-2627 (2018). https://doi.org/10.1021/acsomega.8b00092.
40. Bajpai, N., Tiwari, A., Khan, S.A., et al. “Effects of rare earth ions (Tb, Ce, Eu, Dy) on the thermoluminescence characteristics of sol-gel derived and γ-irradiated SiO2 nanoparticles”, Luminescence, 29, pp. 669–673 (2014). https://doi.org/10.1002/bio.2604.
41. Lian, S., Diko, C.S., Yan Y., et al. “Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens.” Biotech., 9, Article 221 (2019). https://doi.org/10.1007/s13205-019-1748-y.
42. Prasetya, A.D., Rifai, M., Mujamilah, H., et al. “X-ray diffraction (XRD) profile analysis of pure ECAP-annealing nickel samples”, Journal of Physics: Conf. Series, 1436, 012113 (2020). https://doi.org/10.1088/1742-6596/1436/1/012113.
43. Kulandaivelu, B. and Gothandam, K.M. “Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles”, Braz. Arch. Biol. Technol., 59, e16150529 (2016). https://doi.org/10.1590/1678-4324-2016150529.
44. Huang, C.-Y., Ju, D.-T., Chang, C.-F., et al. “A Review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer”, BioMed., 7, pp. 12-23 (2017). https://doi.org/10.1051/bmdcn/2017070423.
45. Akram, M., Iqbal, M., Daniyal, M., et al. “Awareness and current knowledge of breast cancer”, Biol. Res., 50, 33 (2017).
https://doi.org/10.1186/s40659-017-0140-9.
46. Sutradhar, K.B., Amin, Md. L. “Nanotechnology in cancer drug delivery and selective targeting”, Int. Sch. Res. Notices, 2014, 939378, 12 pages (2014). https://doi.org/10.1155/2014/939378.
47. Xin, Y., Yin, M., Zhao, L., et al. “Recent progress on nanoparticle-based drug delivery systems for cancer therapy”, Cancer Biol. Med., 14, pp. 228-241 (2017). https://doi.org/10.20892/j.issn.2095-3941.2017.0052.
48. Wang, X., Teng, Z., Wang, H., et al. “Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system”, Int. J. Clin. Exp. Pathol., 7(4), pp. 1337-1347 (2014). PMCID: PMC4014214 PMID: 24817930.
49. Gurunathan, S., Han, J.W., Eppakayala, V., et al. “Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells”, BioMed. Res. Inter., 2013, 535796, 10 pages (2013). https://doi.org/10.1155/2013/535796.
50. Fuchs, Y. and Steller, H. “Programmed cell death in animal development and disease”, Cell, 147(4), pp. 742-758 (2011).
https://doi.org/10.1016/j.cell.2011.10.033.
51.Loutfy, S.A., Al-Ansary, N.A., Abdel-Ghani, N.T, et al.“Anti-proliferative activities of metallic nanoparticles inan in vitro breast cancer model”, Asian Pac. J. CancerPrev., 16(14), pp. 6039-6046 (2015). https://doi.org/10.7314/apjcp.2015.16.14.6039.
52.Ortega, F.G., Fernández-Baldo, M.A., Fernandez, J.G.,et al. “Study of antitumor activity in breast cell linesusing silver nanoparticles produced by yeast”, Int. J.Nanomedicine, 10, pp. 2021-2031 (2015). https://doi.org/10.2147/IJN.S75835.
53.Amiri, Z., Moghadam, M.F., and Sadeghizadeh, M.“Anticancer effects of doxorubicin-loaded micelle onMCF-7 and MDA-MB-231, breast cancer cell lines”, J.Res. Med. Dent. Sci., 6(2), pp. 298-304 (2018). https://doi.org/10.5455/jrmds.20186245.
54.Selim, M.E. and Hendi, A.A. “Gold nanoparticlesinduce apoptosis in MCF-7 human breast cancer cells”,Asian Pacific J. Cancer Prev., 13, pp. 1617-1620 (2012). https://doi.org/10.7314/APJCP.2012.13.4.1617.
55.Saulite, L., Pleiko, K., Popena, I., et al. “Nanoparticledelivery to metastatic breast cancer cells bynanoengineered mesenchymal stem cells”, Beilstein J.Nanotech., 9, pp. 321-332 (2018).https://doi.org/10.3762/bjnano.9.32.
56.Tachon, S., Michelon, D., Chambellon, E., et al.“Experimental conditions affect the site of tetrazoliumviolet reduction in the electron transport chain ofLactococcus lactis”, Microbiology (Reading), 155, pp.2941-2948 (2009). https://doi.org/10.1099/mic.0.029678-0.
57.Quent, V.M.C., Loessner, D., Friis, T., et al.“Discrepancies between metabolic activity and DNAcontent as tool to assess cell proliferation in cancerresearch”, J. Cell. Mol. Med., 14(4), pp. 1003-1013(2010). https://doi.org/10.1111/j.1582-4934.2010.01013.x.
Volume 32, Issue 3
Transactions on Nanotechnology
January and February 2025 Article ID:5050
  • Receive Date: 28 October 2020
  • Revise Date: 02 October 2023
  • Accept Date: 19 December 2023