References:
1. Nurgali, K., Jagoe, R.T., and Abalo, R. “Editorial-adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae?”, Front Pharmacol., 9, Article 245 (2018). https://doi.org/10.3389/fphar.2018.00245.
2. Livshits, Z., Rao, R.B., and Smith, S.W. “An approach to chemotherapy-associated toxicity”, Emerg. Med. Clin. North Am., 32(1), pp. 167-203 (2014). https://doi.org/10.1016/j.emc.2013.09.002.
3. Dougherty, P.M., Cata, J.P., Cordella, J.V., et al. “Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients”, Pain , 109, pp. 132–142 (2004). https://doi.org/10.1016/j.pain.2004.01.021.
4.Zundelevich, A., Dadiani, M., Kahana-Edwin, S., et al.“ESR1 mutations are frequent in newly diagnosedmetastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis”, BreastCancer Research, 22, article 532 (2020). https://doi.org/10.1186/s13058-020-1246-5.
5.Shrivastava, S. and Dash, D. “Applying nanotechnology to human health: Revolution in biomedical sciences”, J.Nanotech., 2009, 184702, 14 pages (2009).https://doi.org/10.1155/2009/184702.
6.Bera, S. and Mondal, D. “A role for ultrasound in thefabrication of carbohydrate-supported nanomaterials”,Journal of Ultrasound, 22, pp. 131-156 (2019). https://doi.org/10.1007/s40477-019-00363-8.
7.Bera, S. and Mondal, D., A book chapter “Chapter-7Stimuli-sensitive nanomaterials for antimicrobial drugdelivery”, in the Book: “Drug targeting and stimulisensitive drug delivery systems”, pp. 271-302 (2018).Edited by Grumezescu, A.M., Elsevier Inc. ISBN9780128136904. https://doi.org/10.1016/B978-0-12-813689-8.00007-0.
8.Desai, S.K., Bera, S., Singh, M., et al. “Multifacetedsynthesis, properties and applications of polyurethanesand its composites”, Journal of Applied PolymerScience, 134, 44463 (2017). https://doi.org/10.1002/app.44463.
9.Li, W., Corke, H., and Beta, T., “Kinetics of hydrolysisand changes in amylose content during preparation ofmicrocrystalline starch from high-amylose maizestarches”, Carbohydr. Polym., 69, pp. 398-405 (2007).https://doi.org/ 10.1016/j.carbpol.2006.12.022.
10.Zhang, X.-F., Liu, Z.-G., Shen, W., et al. “SilverNanoparticles: Synthesis, Characterization, Properties,Applications, and Therapeutic Approaches”, Int. J. Mol.Sci., 17, Article 1534 (2016). https://doi.org/ 10.3390/ijms17091534.
11.Dagogo-Jack, I. and Shaw, A.T. “Tumour heterogeneityand resistance to cancer therapies”, Nat. Rev. Clin.Oncol., 15(2), pp. 81–94 (2018). https://doi.org/10.1038/nrclinonc.2017.166.
12.Martinelli, C., Pucci, C., and Ciofani, G.“Nanostructured carriers as innovative tools for cancerdiagnosis and therapy”, APL Bioeng, 3, 011502 (2019).https://doi.org/10.1063/1.5079943.
13.Gopi, M., Pearlin, B., Kumar, R.D., et al. “Role ofnanoparticles in animal and poultry nutrition: modes ofaction and applications in formulating feed additivesand food processing”, Int. J. Pharmacol., 13(7), pp. 724-731 (2017). https://doi.org/10.3923/ijp.2017.724.731.
14.Bhattacharyya, A., Mohammad, F., Naika, H.R., et al.“Nanoparticles: alternatives against drug-resistant pathogenic microbes”, Res. J. Nanosci. Nanotech., 5(2), pp. 27-43 (2015). https://doi.org/10.3390/molecules21070836.
15.Li, Y., Lin, Z., Zhao, M., et al. “Multifunctionalselenium nanoparticles as carriers of HSP70 siRNA toinduce apoptosis of HepG2 cells”, Int. J.Nanomedicine, 11, pp. 3065–3076 (2016). https://doi.org/10.2147/IJN.S109822.
16.Li, Y., Guo, M., Lin, Z., et al. “Polyethylenimine-functionalized silver nanoparticle-based co-delivery ofpaclitaxel to induce HepG2 cell apoptosis”, Int. J.Nanomedicine, 11, pp. 6693–6702 (2016). https://doi.org/10.2147/IJN.S122666.
17.Li, Y., Lin, Z., Guo, M., et al. “Inhibitory activity ofselenium nanoparticles functionalized with oseltamiviron H1N1 influenza virus”, Int. J. Nanomedicine, 12, pp.5733–5743 (2017). https://doi.org/10.2147/IJN.S140939.
18.Xia, Y., Wang, C., Xu, T., et al. “Targeted delivery ofHES5-siRNA with novel polypeptide-modifiednanoparticles for hepatocellular carcinoma therapy”,RSC Adv., 8(4), pp. 1917–1926 (2018). https://doi.org/10.1039/c7ra12461a.
19.Xia, Y., Xu, T., Wang, C., et al. “Novel functionalizednanoparticles for tumor-targeting co-delivery ofdoxorubicin and siRNA to enhance cancer therapy”, Int.J. Nanomedicine, 13, pp. 143–159 (2018). https://doi.org/10.2147/IJN.S148960.
20.Kang, Z., Liu, Y., Lee, S.-T. “Small-sized siliconnanoparticles: new nanolights and nanocatalysts”,Nanoscale, 3, pp. 777-791 (2011). https://doi.org/10.1039/C0NR00559B.
21.Azizi, M., Ghourchian, H., Yazdian, F., et al. “Cytotoxiceffect of albumin coated copper nanoparticle on humanbreast cancer cells of MDA-MB 231”, PLoS ONE,12(11), e0188639 (2017). https://doi.org/10.1371/journal.pone.0188639.
22.Vetchinkina, E., Loshchinina, E., Kupryashina, M., et al. “Green synthesis of nanoparticles with extracellular andintracellular extracts of basidiomycetes”, Peer J., 6,e5237 (2018). https://doi.org/10.7717/peerj.5237.
23.Soenen, S.J., Manshian, B., Montenegro, J.M., et al.“Cytotoxic effects of gold nanoparticles: amultiparametric study”, ACS Nano, 6(7), pp. 5767-5783(2012). https://doi.org/10.1021/nn301714n.
24.Krishna, G., Srileka, V., Singara Charya M.A., et al.“Biogenic synthesis and cytotoxic effects of silvernanoparticles mediated by white rot fungi”, Heliyon, 7,e06470 (2021). https://doi.org/10.1016/j.heliyon.2021.e06470.
25.Kim, I.Y., Kwak, M., Kim, J., et al. “Comparative studyon nanotoxicity in human primary and cancer cells”,Nanomaterials, 12(6), 993 (2022). https://doi.org/10.3390/nano12060993.
26.Cha, K.E. and Myung, H. “Cytotoxic effects ofnanoparticles assessed in vitro and in vivo”, J.Microbiol. Biotechnol., 17(9), pp. 1573-1578 (2007). PMID: 18062241. 27. Khanna, P., Ong, C., Bay, B.H., et al. “Nanotoxicity: An interplay of oxidative stress, inflammation and cell death”, Nanomater., 5, pp. 1163-1180 (2015). https://doi.org/10.3390/nano5031163.
28. Ahire, J.H., Chambrier, I., Mueller, A., et al. “Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells”, ACS Appl. Mater Interfaces, 5(15), pp. 7384-91 (2013). https://doi.org/10.1021/am4017126.
29. Sun, J., Liu, Y., Ge, M., et al. “A distinct endocytic mechanism of functionalized-silica nanoparticles in breast cancer stem cells”, Sci. Rep., 7, 16236 (2017). https://doi.org/10.1038/s41598-017-16591-z.
30. Kumar, A., Bera, S., Singh, M., et al. “Agrobacterium-assisted selenium nanoparticles: molecular aspect of antifungal activity”, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9, 015004 (2018). https://doi.org/10.1088/2043-6254/aa9f4a.
31. Cassidy, C. Singh, V., Grammatikopoulos, P., et al. “Inoculation of silicon nanoparticles with. silver atoms”, Sci. Rep., 3, 3083 (2013). https://doi.org/10.1038/srep03083.
32. Tugarova, A.V., Mamchenkova, P.V., Dyatlova, Y.A., et al. “FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium azospirillum thiophilum”, Spectrochim. Acta A Mol. Biomol. Spectrosc., 192, pp. 458–463 (2018). https://doi.org/10.1016/j.saa.2017.11.050.
33. Le, V.H., Thuc, C.N.H., and Thuc, H.H. “Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method”, Nanoscale Res. Lett., 8(1), Article 58 (2013). https://doi.org/10.1186/1556-276X-8-58.
34. Stöber, W., Fink, A., and Bohn, E. “Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Sci., 26, pp. 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5.
35. Kim, K.-M., Kim, H.M., Lee, W.-J., et al. “Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica”, Int. J. Nanomed., 9, pp. 29-40 (2014). https://doi.org/10.2147/IJN.S57922.
36. Wells, M.J.M. “Conductivity-dependent flow field-flow fractionation of fulvic and humic acid aggregates”, Chromatogr., 2, pp. 580-593 (2015). https://doi.org/10.3390/chromatography2030580.
37. Bhattacharjee, S. “DLS and zeta potential - What they are and what they are not?” J. Control Release, 235, pp. 337-351 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017.
38. Amirthalingam, T., Kalirajan, J., and Chockalingam, A. “Use of silica-gold core shell structured nanoparticles for targeted drug delivery system”, J. Nanomed. Nanotech., 2(6), 1000119 (2011). https://doi.org/10.4172/2157-7439.1000119.
39. Rovani, S., Santos, J.J., Corio, P., et al. “Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash”, ACS Omega, 3, pp. 2618-2627 (2018). https://doi.org/10.1021/acsomega.8b00092.
40. Bajpai, N., Tiwari, A., Khan, S.A., et al. “Effects of rare earth ions (Tb, Ce, Eu, Dy) on the thermoluminescence characteristics of sol-gel derived and γ-irradiated SiO2 nanoparticles”, Luminescence, 29, pp. 669–673 (2014). https://doi.org/10.1002/bio.2604.
41. Lian, S., Diko, C.S., Yan Y., et al. “Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens.” Biotech., 9, Article 221 (2019). https://doi.org/10.1007/s13205-019-1748-y.
42. Prasetya, A.D., Rifai, M., Mujamilah, H., et al. “X-ray diffraction (XRD) profile analysis of pure ECAP-annealing nickel samples”, Journal of Physics: Conf. Series, 1436, 012113 (2020). https://doi.org/10.1088/1742-6596/1436/1/012113.
43. Kulandaivelu, B. and Gothandam, K.M. “Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles”, Braz. Arch. Biol. Technol., 59, e16150529 (2016). https://doi.org/10.1590/1678-4324-2016150529.
44. Huang, C.-Y., Ju, D.-T., Chang, C.-F., et al. “A Review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer”, BioMed., 7, pp. 12-23 (2017). https://doi.org/10.1051/bmdcn/2017070423.
45. Akram, M., Iqbal, M., Daniyal, M., et al. “Awareness and current knowledge of breast cancer”, Biol. Res., 50, 33 (2017).
https://doi.org/10.1186/s40659-017-0140-9.
46. Sutradhar, K.B., Amin, Md. L. “Nanotechnology in cancer drug delivery and selective targeting”, Int. Sch. Res. Notices, 2014, 939378, 12 pages (2014). https://doi.org/10.1155/2014/939378.
47. Xin, Y., Yin, M., Zhao, L., et al. “Recent progress on nanoparticle-based drug delivery systems for cancer therapy”, Cancer Biol. Med., 14, pp. 228-241 (2017). https://doi.org/10.20892/j.issn.2095-3941.2017.0052.
48. Wang, X., Teng, Z., Wang, H., et al. “Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system”, Int. J. Clin. Exp. Pathol., 7(4), pp. 1337-1347 (2014). PMCID: PMC4014214 PMID: 24817930.
49. Gurunathan, S., Han, J.W., Eppakayala, V., et al. “Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells”, BioMed. Res. Inter., 2013, 535796, 10 pages (2013). https://doi.org/10.1155/2013/535796.
50. Fuchs, Y. and Steller, H. “Programmed cell death in animal development and disease”, Cell, 147(4), pp. 742-758 (2011).
https://doi.org/10.1016/j.cell.2011.10.033.
51.Loutfy, S.A., Al-Ansary, N.A., Abdel-Ghani, N.T, et al.“Anti-proliferative activities of metallic nanoparticles inan in vitro breast cancer model”, Asian Pac. J. CancerPrev., 16(14), pp. 6039-6046 (2015). https://doi.org/10.7314/apjcp.2015.16.14.6039.
52.Ortega, F.G., Fernández-Baldo, M.A., Fernandez, J.G.,et al. “Study of antitumor activity in breast cell linesusing silver nanoparticles produced by yeast”, Int. J.Nanomedicine, 10, pp. 2021-2031 (2015). https://doi.org/10.2147/IJN.S75835.
53.Amiri, Z., Moghadam, M.F., and Sadeghizadeh, M.“Anticancer effects of doxorubicin-loaded micelle onMCF-7 and MDA-MB-231, breast cancer cell lines”, J.Res. Med. Dent. Sci., 6(2), pp. 298-304 (2018). https://doi.org/10.5455/jrmds.20186245.
54.Selim, M.E. and Hendi, A.A. “Gold nanoparticlesinduce apoptosis in MCF-7 human breast cancer cells”,Asian Pacific J. Cancer Prev., 13, pp. 1617-1620 (2012). https://doi.org/10.7314/APJCP.2012.13.4.1617.
55.Saulite, L., Pleiko, K., Popena, I., et al. “Nanoparticledelivery to metastatic breast cancer cells bynanoengineered mesenchymal stem cells”, Beilstein J.Nanotech., 9, pp. 321-332 (2018).https://doi.org/10.3762/bjnano.9.32.
56.Tachon, S., Michelon, D., Chambellon, E., et al.“Experimental conditions affect the site of tetrazoliumviolet reduction in the electron transport chain ofLactococcus lactis”, Microbiology (Reading), 155, pp.2941-2948 (2009). https://doi.org/10.1099/mic.0.029678-0.
57.Quent, V.M.C., Loessner, D., Friis, T., et al.“Discrepancies between metabolic activity and DNAcontent as tool to assess cell proliferation in cancerresearch”, J. Cell. Mol. Med., 14(4), pp. 1003-1013(2010). https://doi.org/10.1111/j.1582-4934.2010.01013.x.