
Scientia Iranica (2025) 32(3): 5050 

To cite this article: 
A. Kumar, S. Bera, M. Singh, D. Mondal “Synthesis of hybrid Se-SiNPs nanoparticle for the studies of cellular toxicity against breast cancer cell line 
MCF-7”, Scientia Iranica (2025), 32(3): 5050. https://doi.org/10.24200/sci.2023.57071.5050 

2345-3605 © 2025 Sharif University of Technology. This is an open access article under the CC BY-NC-ND license. 

Sharif University of Technology 

Scientia Iranica 
Transactions on Nanotechnology 

https://scientiairanica.sharif.edu 

Synthesis of hybrid Se-SiNPs nanoparticle for the studies of cellular toxicity 
against breast cancer cell line MCF-7 
Anil Kumar a, Smritilekha Bera b, *, Man Singh b, Dhananjoy Mondal b 

a. School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India-382030.
b. School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India-382030.

* Corresponding author: lekha026@yahoo.com (S. Bera)

Received: 28 October 2020; received in revised form 2 October 2023; accepted 19 December 2023 

Keywords Abstract 
Cytotoxicity; 

MCF-7 breast cancer cells; 

SiNPs; 

SeNPs; 

Se-SiNPs;  

Nanocomposite. 

A hybrid nanocomposite of biologically compatible silica nanoparticles (SiNPs), coated with selenium 
nanoparticles (SeNPs), was developed, and evaluated for cytotoxicity on the breast cancer cell line using 
MTT assay methods. The hybrid nanoparticles were characterized using Dynamic Light Scattering 
(DLS), pXRD, and SEM analytical techniques. The size and size distribution of SiNPs and composite 
Se-SiNPs nanoparticles were determined by the DLS experiment. The sizes of SiNPs and Se-SiNPs were 
found to be 23.85 nm and 89.9 nm in diameter, respectively. The Se-SiNPs hybrid nanomaterials 
exhibited higher cytotoxicity than pure SiNPs against the breast cancer cell line MCF-7. When compared 
to SiNPs, composite Se-SiNPs suppressed the growth of the breast cancer cell line MCF-7. 

1. Introduction
According to a report published by the World Health 
Organization in 2020, breast cancer is the most widely 
recognized disease for tumor-related death, with over 
685,000 deaths every year. Breast cancer is becoming more 
prevalent worldwide, with approximately 2.26 million new 
cases diagnosed each year. Despite the existence of 
numerous treatment methods for breast cancer, such as 
radiotherapy and chemotherapy, these treatments have side 
effects on healthy cells [1,2]. Many recent studies have 
focused on the discovery of new drugs to treat breast cancer 
[3,4]. Although medicine has made significant progress, 
there are still several concerns that need to be addressed to 
improve cancer treatment. Nanotechnology is catalyzing a 
global revolution in the field of science [5-9]. Nanoparticles 
[10-12] possess well-defined and controllable physical and 
chemical properties, making them applicable in various 
health-related domains, including nutrition, medicine, 
targeted drug delivery, genetic engineering, and vaccine 
manufacturing [13]. They also exhibit significant potential 
for enhancing applications across diverse sectors, such as 
agriculture, consumer products, cosmetics, energy, and 

transportation [14]. Nanomedicines, which are nanometer-
sized compounds, enhance the bioavailability of drugs in 
tissues, potentially improving the efficacy of systemically 
administered chemotherapeutic drugs. Selenium (Se) is a 
crucial dietary micronutrient involved in various 
physiological functions [15,16], including cancer prevention 
and immune response [17]. Selenium nanoparticles (SeNPs) 
exhibit the ability to selectively target cancer cells and exert 
synergistic anticancer effects [18,19], suggesting their 
potential in eliminating cancer cells. Silica nanoparticles 
(SiNPs) are another essential biocompatible and nontoxic 
nanoparticle, widely utilized in biological and other 
applications due to their stable chemical structure, high 
sensitivity, reactive surface, large surface-to-volume ratios, 
and manageable biodegradability [20,21]. Se and SiNPs find 
applications in various medical fields, including bioimaging, 
diagnostics, medication delivery, and photodynamic therapy. 
SiNPs have demonstrated cytotoxic effects in various cancer 
cell lines [22-29]. 

In this study, we aimed to prepare hybrid material Se-
SiNPs, expecting to leverage their synergistic properties in 
the biotechnology and biopharmaceutical industry. Both  
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Figure 1. Representation of the synthesis of hybrid nanoparticles (SSR). 

 
SiNPs and SeNPs exhibit biocompatible effects with 
minimal harm in physiological conditions. This marks the 
first instance of producing and using hybrid Se-SiNPs 
nanoparticles for evaluating their in vitro cytotoxic effects on 
the breast cancer cell line MCF-7. We conducted the 
assessment using a time and concentration-dependent MTT 
assay. The hybrid nanocomposite was developed by grafting 
3-aminopropyl trimethoxysilane (APTS) into SiNPs and 
covering them with SeNPs. We characterized and studied this 
nanoparticle's cellular toxicity and anticancer efficacy on 
cancer cell lines, as depicted in Figure 1. 

2. Materials and methods 

The chemicals and reagents, namely 3-aminopropyl 
trimethoxysilane (APTS), Dulbecco's Modified Eagle 
Medium (DMEM), fetal bovine serum, methyl-thiazolyl 
diphenyl-tetrazolium bromide (MTT), and dimethyl 
sulfoxide (DMSO), were procured from Sigma Aldrich and 

Hi-media. The cultured MCF-7 cell line was obtained from 
the Department of Chemistry at Delhi University. 

3. Procedure for preparation of nanocomposite Se-
SiNPs 

The protocol [30] for amine-functionalized SiNPs coated 
with SeNPs was modified in several steps: 

1. Initially, 10.0 mg of SiNPs salt was dispersed in 
10.0 mL of anhydrous ethanol using a sonicator 
operating at 20 kHz for 30 minutes; 

2. Next, 1.0 mL of 3-aminopropyl trimethoxysilane 
was added dropwise to the SiNPs solution and 
stirred in a nitrogen environment for 12 hours at 
room temperature; 

3. Following this, the solution mixture was subjected 
to centrifugation at 5000 rpm for 30 minutes, and 
the supernatant was discarded. The residue was 
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washed five times with deionized water to remove 
any unreacted APTS; 

4. Subsequently, the amine group was grafted onto the 
surfaces of SiNPs, resulting in SiNPs-NH2, which 
served as a linker for attachment (A); 

5. Sample (A), consisting of white powder with the 
amine group grafted to SiNPs (SiNPs-NH2), was 
dissolved in Milli-Q water at a concentration of 1.0 
mg/mL; 

6. Sample (B), a pre-synthesized red powder of SeNPs 
at a concentration of 1.0 mg/mL, was dissolved in 
Milli-Q water; 

7. Equal volumes (v/v) of both samples A and B were 
mixed, and the mixture was stirred at room 
temperature for 24 hours; 

8. The resulting composite nanomaterial of Se-SiNPs 
had its solvent removed through centrifugation, and 
the samples were dried in powder form under 
vacuum conditions for subsequent characterization 
and utilization. 

4. In-vitro cytotoxicity and cell viability test with Se-
SiNPs protocol of cell culture 

Breast cancer cell line MCF-7 was cultured and maintained 
in DMEM supplemented with 20 µg/mL of penicillin, 100 
µg/mL of streptomycin, and 10% Fetal Bovine Serum (FBS). 
The culture was incubated at 37°C with 95% air in a 
humidified, 5% CO2 atmosphere of a BOD incubator. To 
increase the cell density, cells were subcultured every third 
day, starting with an initial density of 2×105 cells/mL. 

4.1. Protocol of MTT assay  

The cultured cells (100 µL/well) were seeded in a 96-well 
cell culture plate (microtiter) and incubated at 37°C 
overnight in a BOD incubator. 

1. After seeding, cells with a confluence level of 60-
70% were treated with various doses of compounds 
C1, C2, SR, and SSR (where C1 represents the 
control medium without cells, C2 represents the 
control medium with cells, SR represents cells 
cultured in a medium containing SiNPs, and SSR 
represents cells cultured in a medium containing Se-
SiNPs), with concentrations ranging from 0-300 µM, 
which were diluted in cell culture media. These cells 
were then incubated for 48 hours after treatment; 

2. MTT reagent (10.0 µL/well) was added at a final 
concentration of ≈0.5 mg/mL and incubated for 4 
hours to form formazan; 

3. To solubilize the formazan, 100 µL/well of DMSO 
was added to each well, and the solubilized formazan 
reagent was measured spectrophotometrically; 

4. The absorbance of the purple-blue formazan dye was 
recorded at 540 nm with a reference wavelength of 
690 nm to count the viable cells. 

5. Results and discussion  
The SiNPs (silica nanoparticles) were coated with SeNPs 
(selenium nanoparticles) using a novel method to prepare 

 
Figure 2. DLS studies and histogram with zeta potential of 
synthesized SiNPs. 
 

 
Figure 3. (a) SEM images of synthesised SiNPs with a diameter of 
24 nm and (b) element distribution by EDS. 
 
composite nanoparticles [31,32]. SiNPs (silica 
nanoparticles) were synthesized applying the sol-gel 
chemical method [33,34], from sodium silicate. The 
synthesized SiNPs were characterized by Dynamic Light 
Scattering (DLS) (Figure 2), SEM (Figure 3(a)), and Energy 
Dispersive Spectroscopy (EDS) (Figure 3(b)).  

In our previous work [30] we utilized Agrobacterium 
species to reduce sodium selenite, resulting in the 
production of selenium nanoparticles (SeNPs) from 
Na2SeO3, as illustrated in Figure 4(a). To briefly summarize  
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Figure 4. (a) Yeast Extract Mannitol Broth (YEMB) + 
agrobacterium; (b) YEMB + agrobacterium + Na2SeO3; (C) SeNPs 
in 0.1-1.0 M Na2SeO3 solutions. 
 

 
Figure 5. DLS studies and histogram with zeta potential of 
synthesized SiNPs. 
 
the process, the bacterial cell membranes were initially 
destabilized through steam penetration and then subjected to 
high-speed centrifugation. This approach yielded SeNPs 
with a larger percentage of particle sizes ranging from 200 to 
300 nm in diameter, as shown in Figure 4(c). The quantity of 
Na2SeO3 metabolized by Agrobacterium (as depicted in 
Figure 4B) determined the amount of SeNPs generated, 
rather than the concentration of Na2SeO3 in the solution. 
DLS was employed to record the size distribution of SeNPs 
in the aqueous medium. Most of the nanoparticles fell within 
the diameter range of 100 to 350 nm, with a maximum size 
distribution of 19 ± 1 nm. These nanoparticles were coated 
with biomolecular functional groups such as -OH, -COOH, -
NH2, etc. 

The hybrid nanoparticles were formed by combining 
white silica and red selenium nanoparticles in the presence 
of grafting agents APTS (3-aminopropyl trimethoxysilane). 
Since both SeNPs and SiNPs have negatively charged 
surfaces, an  amine group from  APTS  was grafted onto the  
surfaces of SiNPs, creating SiNPs-NH2 as a linker. This 
provided a platform for the attachment of SeNPs, resulting 
in the formation of composite nanomaterials [35]. Pre-
synthesized SiNPs (silica nanoparticles) and SeNPs were 
utilized to develop the composite nanoparticle Se-SiNPs. 
However, it should be noted that the overall combination of 
nanoparticles led to an increase in the size of the 
composite nanoparticles. To achieve this goal, the hydroxy 

 
Figure 6. The absorbance spectra of SiNPs and Se-SiNPs. 
 
 functionalities of SiNPs were initially converted to -NH2 
groups, which would act as a linker for the incorporation of 
biocompatible molecules in addition to the existing -OH 
functionalities on the SiNPs. In summary, the SiNPs were 
dispersed in anhydrous ethanol, and then a solution of 3-
aminopropyl trimethoxysilane (APTS) was gradually added 
to the SiNPs solution. This mixture was stirred under a 
nitrogen atmosphere for 12 hours at room temperature, 
followed by centrifugation at 5000 rpm for 30 minutes. The 
supernatant was discarded, and the SiNPs were washed five 
times with deionized water to remove any unreacted APTS 
residue. Subsequently, the amine group was grafted onto the 
surfaces of SiNPs, resulting in SiNPs-NH2. This white 
powder of SiNPs-NH2 was then dispersed in deionized water 
at a concentration of 1.0 mg/mL, and the pH of the medium 
was adjusted to 7.0 by adding HCl/NaOH to create colloidal 
SiNPs-NH2 in a neutral form. 

In another container, a pre-synthesized red powder of 
SeNPs at a concentration of 1.0 mg/mL was dissolved in 
Milli-Q water. Both sets of nanoparticles were combined in 
equal volumes (v/v), and the mixture was stirred at room 
temperature for 24 hours. The solvent was subsequently 
removed through centrifugation, and the resulting samples 
were dried in powder form under vacuum conditions. This 
process yielded a nanocomposite nanomaterial known as Se-
SiNPs, which was later used for various characterization and 
applications. 

The DLS experiment determined the size and size 
distribution of SiNPs and nanocomposite Se-SiNPs, 
revealing that the polydispersity index (PDI) is 5.11 and 
1.48, respectively, with a diameter of 23.85 nm for SiNPs 
and 189.9 nm for Se-SiNPs. The zeta (ζ) potential of SiNPs 
is -11.2 mV and that of Se-SiNPs is -1.35 mV, with negative 
charges on the surface of the nanoparticles [36,37]. It is 
assumed that the ability of hydrogen bond formation and 
electrostatic interactions of –OH  and  amine groups of SiNPs 
with functionalities of Se-nanoparticles facilitated the 
development of the nanocomposite (Figure 5). 

5.1. Absorbance spectrum of SiNPs and nanocomposite Se-
SiNPs 
The formation of the Se-SiNPs nanocomposite was 
confirmed using absorbance spectroscopy [38]. SiNPs 
exhibited λmax at 220 and 410 nm, whereas the Se-Si 
nanocomposite displayed λmax at 220 and 455 nm in the 
absorbance spectra, indicating the successful preparation of 
the nanocomposite (Figure 6). 
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Figure 7. Powder XRD analysis of Se-SiNPs and   SiNPs (inset 
image). 
 
5.2. Powder XRD analysis of SiNPs and composite Se-
SiNPs 
The dried solid SiNPs and Se-SiNPs nanocomposite were 
subjected to XRD analysis to determine their crystalline 
pattern, with the scanning range set between 10-80° 2θ 
angles. Figure 7 illustrates the PXRD patterns of SiNPs 
and the hybrid nanocomposite Se-SiNPs. In the PXRD 
pattern of SiNPs, no sharp peaks are observed, and a broad 
band centered at 22° indicates the amorphous structure of 
SiO2. In the Se-SiNPs PXRD pattern, the broad shoulder 
between 2θ values of 20-28° corresponds to amorphous 
SiO2 [39,40] while the peaks at 2θ values of 19°, 29°, 55°, 
and 59° correspond to the (100), (101), (112), and (202) 
lattice planes of the crystalline Se standard hexagonal 
phase, respectively (JCPDS No. 06-0362) [41]. Therefore, 
in the PXRD pattern of Se-SiNPs, the standard peaks of 
hexagonal crystalline selenium were observed at lower 
values   compared  to  the   standard   peaks  of   hexagonal 
crystalline selenium at 23°, 56°, and 62°. This peak 
shifting may suggest an expansion to higher lattice 
parameters of SiNPs due to the interaction between silica 
and Se nanoparticles, as well as a change in the size of the 
SiNPs during composite formation with Se [42]. In the Se-
SiNPs PXRD pattern, both amorphous silica nanoparticles 
and crystalline SeNPs exhibited well-defined diffraction 
peaks, confirming the formation of the nanocomposite. 
The highest peak signal corresponding to the (101) plane 
indicated that it is the predominant plane in Se-SiNPs. 
Overall, the XRD patterns demonstrated that the Se-SiNPs 
composite possessed a highly pure amorphous-crystalline 
structure. 

5.3. SEM images of SiNPs and nanocomposite Se-SiNPs 

The sizes and shapes of SiNPs (SR) and composite Se-SiNPs 
(SSR) were assessed using their respective SEM images. 
These images revealed that the size of SiNPs is 
approximately 24 nm in diameter, and they have a spherical 
shape. In contrast, the composite Se-SiNPs were found to 
have a diameter of about 189 nm and an oval shape that 
overlapped with each other. This increase in size for the 
composite Se-SiNPs compared  to the  24  nm  diameter of  

 
Figure 8. Scanning Electron Microscopy (SEM) images of the 
SiNPs (SR) and Se-SiNPs (SSR). 

 
SiNPs was observed within the 0 to 3.5 keV dispersive 
energy frequency range of the SEM equipment (Figure 8). 

5.4. Cytotoxicity effects and cell viability study of SiNPs 
(SR) and nanocomposite Se-SiNPs (SSR) 

The cytotoxic effects of nanoparticles inhibited the 
proliferation of the MCF-7 breast cancer cell line, 
depending on time and concentration in the MTT assay 
[43]. The primary cause of treatment failure in cancer and 
the leading cause of death among women with breast cancer 
is the development of chemotherapy resistance by the 
cancer cells [44,45]. Nanoparticle-based treatments offer 
several advantages, including reduced toxicity and the 
ability to target cancer cells [46,47]. Composite and 
functionalized nanoparticles have been widely employed in 
anticancer therapy [48]. The MTT assay was employed to 
evaluate the cytotoxic effects of nanoparticles on MCF-7 
cells in terms of inhibiting diseased cell growth and cell 
proliferation. Analogues of adenosine can inhibit cell 
proliferation and induce apoptosis in estrogen receptor-
positive breast cancer. Throughout the incubation process, 
the infected cells retained their original morphology [49]. 
Multicellular organisms rely on programmed cell death to 
maintain their integrity and homeostasis [50]. The 
cytotoxicity of the developed nanoparticles was 
demonstrated  in the treatment of the  breast cancer cell line  
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Figure 9. Cell viability study in the presence of SiNPs (SR) and 
Se-SiNPs (SSR). 
 
MCF-7 with malignancies [51,52]. The viability of MCF-7 
breast cancer cell lines was reduced using nanoparticles [53-
55]. Cells were transplanted to produce formazan dyes by 
reducing the tetrazolium component (MTT) [56,57]. Cell 
viability was tested in the concentration range of 1-300 µM 
to determine the anticancer activity of SiNPs and the 
composite Se-SiNPs against MCF-7 breast cancer cell lines 
after 48 hours of exposure. The percentage of cell viability 
was evaluated at various concentrations of nanoparticles. A 
graph illustrating the relationship between concentrations 
and cell viability inhibition was plotted based on these 
analytical findings (Figure 9). Figure 9 reveals that cell 
viability remains nearly 100% when SR and SSR are present 
at concentrations up to 100 µM. This suggests that these 
nanoparticles exhibit negligible anti-cancer efficacy at 
concentrations up to 100 µM. However, as the concentration 
increases further, it becomes evident that cell viability in the 
presence of SSR is four times lower compared to its absence. 
This suggests that at higher concentrations, these 
nanomaterials can strongly bind to DNA, inhibiting cell 
proliferation and subsequent growth. Additionally, cell 
viability was determined to be 68% with SSR compared to 
94% with SR at a concentration of 300 µM. Based on the 
results of the cell viability study, it can be concluded that 
SSR is a more effective anticancer agent than SR. 

6. Conclusions 

The nanocomposite Se-SiNPs were successfully 
synthesized, and their sizes, surface area, and physical 
properties were confirmed using analytical techniques 
such as Dynamic Light Scattering (DLS), absorbance 
spectroscopy, pXRD, and SEM. In vitro MTT assay was 
applied to the MCF-7 breast cancer cell line to measure 
cytotoxic effects and cell viability in the presence of 
SiNPs and composite Se-SiNPs, separately. The research 
findings indicated that the nanocomposite Se-SiNPs were 

more effective than SiNPs. Increasing the concentration 
of the nanocomposite Se-SiNPs resulted in substantially 
higher cytotoxic and anticancer activity against the MCF-
7 breast cancer cell line. When compared to SiNPs, 
nanocomposite Se-SiNPs inhibited the proliferation of the 
MCF-7 breast cancer cell line. Although clinical 
investigations are required to uncover their potential in 
the field of medical sciences as anticancer therapeutic 
agents, nanocomposite Se-SiNPs may be employed to 
treat breast cancer and offer the potential applications for 
treating other types of cancer and preventing mortality. 
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