Spline NLMS Adaptive Filter Algorithm based on the Signed Regressor of Input Signal

Document Type : Article

Authors

Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, P.O.Box:16785-163, Tehran, Iran

Abstract

This paper presents a new spline adaptive filtering (SAF) algorithm based on signed regressor (SR) of input signal. The algorithm is called SR-SAF normalized least mean squares (SR-SAF-NLMS). The SR-SAF-NLMS is established through $L_{1}$-norm constraint to the proposed cost function. In this algorithm, the polarity of the input signal is used to adjust the weight coefficients and control point vectors. Therefore, the computational complexity, especially the number of multiplications, is significantly reduced. Furthermore, the performance of the SR-SAF-NLMS is close to the conventional SAF-NLMS. The good performance of the proposed algorithm is demonstrated through several simulation results in different scenarios.

Keywords

Main Subjects



Articles in Press, Accepted Manuscript
Available Online from 04 October 2023
  • Receive Date: 17 April 2023
  • Revise Date: 30 July 2023
  • Accept Date: 04 October 2023