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ABSTRACT
This paper presents a new spline adaptive filtering (SAF) algorithm based on signed regressor (SR) of
input signal. The algorithm is called SR-SAF normalized least mean squares (SR-SAF-NLMS). The
SR-SAF-NLMS is established throughL1-norm constraint to the proposed cost function. In this algo-
rithm, the polarity of the input signal is used to adjust the weight coefficients and control point vectors.
Therefore, the computational complexity, especially the number of multiplications, is significantly re-
duced. Furthermore, the performance of the SR-SAF-NLMS is close to the conventional SAF-NLMS.
The good performance of the proposed algorithm is demonstrated through several simulation results
in different scenarios.

1. Introduction
System identification is an important task in many en-

gineering applications such as channel estimation, acous-
tic echo cancellation, channel equalization, and active noise
control [1-3]. In a system identification task, an adaptive fil-
ter is applied to model the unknown system. This goal is
achieved by adaptation of the filter coefficients based on a
suitable algorithm. The linear adaptive filter (LAF) algo-
rithms such as least mean squares (LMS) and normalized
LMS (NLMS) algorithms are widely used for identifying the
linear system [4]. These algorithms are simple and easy to
implement. But, it is well-known that many real systems are
nonlinear [5, 6]. Therefore, several nonlinear adaptive filter
(NLAF) algorithms were developed [7-9].

Based on Volterra expansions of the input signal, the
Volterra adaptive filtering (VAF) is applied for nonlinear sys-
tem identification [10]. But, this algorithm requires large
number of free parameters and suffers from analytical prob-
lems. The neural networks (NN) can also be utilized to ap-
proximate the nonlinear systems [11]. The high computa-
tional complexity and getting trapped in local minima are the
main problems in this approach. Another method is called
kernel adaptive filtering (KAF) [12, 13]. In this method, the
input signal is transformed into the high-dimensional feature
space by reproducing the kernel. Unfortunately, KAF have
the problem of a continuously increasing network growth.
In functional link network (FLN), the input data is expanded
by a nonlinear function series such as Legendre, and trigono-
metric [14-16]. The computational complexity and the ac-
curacy of this technique are related to the various functional
expansions [17].

A new family of nonlinear adaptive filter algorithms, called
spline adaptive filtering (SAF), has been developed in [18].
The SAF utilizes adaptive spline interpolation to adjust non-
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linear filters. The nonlinear filter learns by updating linear
weight coefficients and a small set of spline control points.
In comparison with other algorithms, the SAF is simple to
implement, flexible, and has low computational complexity.
Based on different spline structures, Wiener [18], Hammer-
stein [19], and cascade [20], various spline adaptive filter
algorithms have been introduced. In all these algorithms,
the LMS algorithm is used to adapt the weight coefficients
and control points. Also, the theoretical steady-state perfor-
mance of SAF-LMS was studied in [21]. In the following,
this approach was extend to infinite impulse response [22],
NLMS [23], and subband adaptive filters [24]. The SAF
has also been developed in different applications such as ac-
tive noise control [25, 26] and adaptive distributed networks
[27]. The frequency domain of SAF algorithm can be found
in [28]. The SAF algorithm has also been extended to two-
dimensional function in [29]. Another researches in SAF
have been focused on nonlinear system identification under
impulsive noise environments [30-32].

It is obvious that during the update process, the conver-
gence speed, the steady-state error, and the computational
complexity are important features. In some applications,
the number of filter coefficients is very large. Therefore, the
high computational complexity is one of themain problem in
these situations. To solve this problem, various approaches
such as selective partial update (SPU) [33-35] and signed re-
gressors (SR) were proposed [36-40]. In the signed regres-
sor LMS (SR-LMS), the signum of the input regressors is
utilized. In this algorithm, the polarity of the input signal is
used to adjust the filter coefficients, which requires no mul-
tiplications. The SR-LMS has a convergence speed and a
steady-state error level that are only slightly inferior to those
of the LMS algorithm for the same parameter setting [41].
To increase the convergence speed of SR-LMS, the signed
regressor NLMS (SR-NLMS) was firstly proposed in [36].
Also, the modified version of this algorithm (MSR-NLMS)
was presented in [42]. In [43], this approach was success-
fully extend to subbnad adaptive filter and SR subband adap-
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tive filter was established which has better performance than
SR-NLMS. Also, the application of SR-SAF in adaptive dis-
tributed diffusion networks can be found in [44].

The SAF-NLMSworks well in nonlinear system identifi-
cation application. However, in comparison with SR-LMS,
this algorithm has higher computational complexity. This
problem is significantly important when the number ofweight
coefficients increases. Therefore, developing the new adap-
tive filter algorithm with low computational complexity and
close performance to SAF-NLMS, is highly desirable. Ac-
cording to what we said, one of the proper solution to reduce
the computational complexity is applying the signum of in-
put signals in weight update equations. This strategy remark-
ably causes to reduce the number of multiplications. In this
research, by introducing the novel cost function, the SR ap-
proach is extended to SAF-NLMS and SR-SAF-NLMS is es-
tablished. The L1-norm criterion is applied to the cost func-
tion with the proper constraint which leads to the appear-
ance of the sign operator into the derived relations. In the
proposed algorithms, the new update equations for weight
coefficients and control point vectors are developed. Since
the sign operator is inserted into the update equation, the
computational complexity is significantly reduced. Also, the
convergence speed of the introduced algorithm is close to
conventional SAF-NLMS. We demonstrate the good perfor-
mance of the proposed algorithms through several simula-
tions in different nonlinear systems.

The contribution of this paper can be summarized as fol-
lows:

• The establishment of the exact SAF-NLMS algorithm
according to proposed cost function.

• The establishment of the SR-SAF-NLMS algorithms
via L1-norm criterion to the introduced cost function.

• Study of the computational complexity in the derived
update relations.

• Performance analysis of the proposed algorithms for
different simulation setups.

• Study of the tracking performance of the proposed al-
gorithms.

• Study of the steady-state performance of the proposed
algorithms in various scenarios.

This paper is organized as follows: Sect. 2 describes the
nonlinear data model. The NLMS algorithm is reviewed in
Sect. 3. In Sect. 4, the SR-NLMS is derived based on the
L1-norm constraint. In Sect. 5, the SAF-NLMS algorithm
is established. The SR-SAF-NLMS is proposed in Sect. 6.
The computational complexity of the proposed algorithm is
discussed in Sect. 7. Finally, the paper ends with a compre-
hensive set of simulations supporting the good performance
of the proposed algorithm.

Throughout the paper, (.)T represents transpose of a vec-
tor or matrix, ‖.‖1 indicates L1-norm of a vector, ‖.‖2 takes
the squared Euclidean norm of a vector, [.] describes the
Floor function, and sign[.] shows the sign function.

2. Nonlinear data model
In this research, the desired signal is generated according

to the following linear and nonlinear data model as
d(k) = ℑ[uT (k)ho] + v(k), (1)

where ho is an M × 1 unknown linear coefficients, u(k) =
[u(k), u(k−1),… , u(k−M+1)]T is anM×1 input regressor
vector, ℑ(.) is a desired nonlinear function and v(k) is an
additive noise with variance �2v . It is assumed that v(k) is
zero mean, white, Gaussian, and independent of u(k). Fig.
1 shows the structure of the desired signal generation.

3. Review of NLMS algorithm
The output r(k) of an adaptive filter at iteration k is given

by
r(k) = hT (k)u(k), (2)

where h(k) = [ℎ0(k), ℎ1(k),… , ℎM−1(k)]T is theM × 1 of
adaptive filter coefficients. The NLMS algorithm minimizes
the following cost function

min1
2
‖h(k + 1) − h(k)‖2, (3)

subject to d(k) = uT (k)h(k + 1). By using the method of
LagrangeMultiplier, the weight coefficients update equation
becomes

h(k + 1) = h(k) + � u(k)
� + ‖u(k)‖2

e(k), (4)

where � is the step-size, � is the regularization parameter,
and e(k) is the output error which is obtained by

e(k) = d(k) − hT (k)u(k). (5)

4. Review of SR-NLMS algorithm
The SR-NLMS algorithm minimizes the following cost

function
min‖h(k + 1) − h(k)‖1, (6)

subject to d(k) = uT (k)h(k + 1). Now define the cost func-
tion as

J (k) = ‖h(k + 1) − h(k)‖1+
�[d(k) − uT (k)h(k + 1)] (7)

where � is the Lagrange Multipliers. Using )J (k)
)h(k+1) = 0 and

)J (k)
)� = 0, we get

d(k) = uT (k)h(k + 1), (8)
and

sign(h(k + 1) − h(k)) = �u(k). (9)
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By multiplying both sides of Eq. (9) into sign(u(k))uT (k)
from the left, we obtain

sign(u(k))uT (k)sign(h(k + 1) − h(k)) =
�sign(u(k))‖u(k)‖2. (10)

Now define the following relation
sign(u(k)) = �(k)u(k), (11)

and
sign(h(k + 1) − h(k)) = �(k)(h(k + 1) − h(k)), (12)

where
�(k) = diag[ 1

|u(k)|
, 1
|u(k − 1)|

,… , 1
|u(k −M + 1)|

],

(13)
and

�(k) = diag[ 1
|ℎ0(k + 1) − ℎ0(k)|

,… ,

1
|ℎM−1(k + 1) − ℎM−1(k)|

]. (14)
Thus, Eq. (10) can be stated as

�(k)u(k)uT (k)�(k)(h(k + 1) − h(k)) =
��(k)u(k)‖u(k)‖2 (15)

Assuming that the diagonal elements of u(k)uT (k) is larger
than off diagonal elements and rearranging the matrices, we
obtain

�(k)�(k)u(k)[uT (k)h(k + 1) − uT (k)h(k)] =
��(k)u(k)‖u(k)‖2 (16)

Since d(k) = uT (k)h(k + 1), we get
�(k)�(k)u(k)e(k) = ��(k)u(k)‖u(k)‖2 (17)

This equation can be written as
�(k)�(k)u(k)e(k) = ��(k)uT (k)u(k)u(k) (18)

We know ‖u(k)‖1 = sign(uT (k))u(k) and �(k)uT (k) =
sign(uT (k)). Therefore,

�(k)�(k)u(k)e(k) = �u(k)‖u(k)‖1 (19)
By multiplying both sides of Eq. (19) into sign(uT (k)) from
the left, � is given by

� =
sign(uT (k))�(k)�(k)u(k)e(k)

(‖u(k)‖1)2
(20)

Substituting Eq. (20) into Eq. (9), we have
�(k)[h(k + 1) − h(k)] =

sign(uT (k))�(k)�(k)u(k)e(k)
(‖u(k)‖1)2

u(k) (21)

Multiplying both sides of Eq. (21) into�−1(k) and rearrang-
ing the diagonal matrices, the SR-NLMS is established as

h(k + 1) = h(k) + �
sign(u(k))
� + ‖u(k)‖1

e(k) (22)

5. The SAF-NLMS algorithm
Fig. 2 indicates the spline adaptive filter setup. Splines

are smooth parametric curves defined by interpolation of prop-
erly defined control points collected in a lookup table (LUT).
The spline estimation provides an approximation of y(k) =
ℑ[r(k)] based on two parameters, p(k), and j(k), which are
directly depending on r(k). In cubic spline curves and for
each input signal, r(k), the spline uses four control points
selected inside the LUT. Each spline span controlled by four
adjacent points of the LUT, is addressed by the so called
span index j(k) and, inside each span, a normalized local
span-abscissa parameter p(k) ∈ [0, 1] is defined. From r(k),
the parameters p(k) and j(k) are obtained as follows

p(k) =
r(k)
Δx

− [
r(k)
Δx

], (23)

j(k) = [
r(k)
Δx

] + Q − 1
2

, (24)

where Δx is the uniform space between control points and
Q is the total number of control points. The output of the
spline interpolation is given by

y(k) = pT (k)Cqj(k), (25)
where

p(k) = [p3(k), p2(k), p(k), 1]T , (26)

qj(k) = [qj(k), qj+1(k), qj+2(k), qj+3(k)]T . (27)
The vector qj(k) is the control point vector and the matric C
is the spline basis matrix. For cubic spline the basis matric
C is defined as

C = 1
6

⎛

⎜

⎜

⎜

⎝

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞

⎟

⎟

⎟

⎠

. (28)

Imposing different constraints to approximation relationship,
several spline basis with different properties, can be eval-
uated in a similar manner. An example of such a basis is
the case of Catmul-Rom (CR) spline [18], very important in
many applications, and the CR-spline basis matric C has the
form

C = 1
2

⎛

⎜

⎜

⎜

⎝

−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

⎞

⎟

⎟

⎟

⎠

. (29)

CR-spline, in fact, specifies a curve that pass through all of
the control points, a feature which is not necessarily true for
other spline methodologies. Overall, the CR-spline results
in a more local approximation with respect to the B-spline.
The update equation in SAF-NLMS needs to calculate for
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both weight coefficients and control pints vectors. It is im-
portant to note that in [23], there is not complete relations to
establish SAF-NLMS in details. In our research, we derive
the exact update equation for SAF-NLMS algorithm. First,
we focus on control points vector. The SAF-NLMS mini-
mizes the following cost function

min‖qj(k + 1) − qj(k)‖2, (30)
subject to

d(k) = pT (k)Cqj(k + 1). (31)
The cost function is defined as

J (k) = ‖qj(k + 1) − qj(k)‖2+
�(d(k) − pT (k)Cqj(k + 1)). (32)

Using )J (k)
)qj (k+1)

= 0 and )J (k)
)� = 0, we get

d(k) = pT (k)Cqj(k + 1), (33)
and

qj(k + 1) = qj(k) +
�
2
CT p(k). (34)

By substituting Eq. (34) into Eq. (33), we have

� =
2e(k)

‖CT p(k)‖2
, (35)

where e(k) = d(k) − pT (k)Cqj(k). Therefore, the updatedequation for control points vector becomes

qj(k + 1) = qj(k) + �q
CT p(k)

� + ‖CT p(k)‖2
e(k), (36)

where�q is the step-size in control points vector update equa-tion. For the weight coefficients vector, we define the follow-
ing cost function

J (k) = ‖h(k + 1) − h(k)‖2+
�(d(k) − pT (k)Cqj(k)) (37)

It is important to note that pT (k) is related to h(k+1). Now,
we select the same Largrange Multiplier as Eq. (35), � =

2e(k)
‖CT p(k)‖2 , then by )J (k)

)qj (k+1)
= 0, we get

h(k + 1) = h(k) + �ℎ
ṗT (k)Cqj(k)u(k)
� + ‖CT p(k)‖2

e(k), (38)

where
ṗ(k) = [3p2(k), 2p(k), 1, 0]T , (39)

and it is the derivative of p(k). Also, �ℎ is the step-size in
weight coefficients vector update equation.

6. The SR-SAF-NLMS algorithm
Fig. 3 depicts the SR spline adaptive filter setup. The

aim of this section is providing the new algorithm which
has low computational complexity and close performance to
SAF-NLMS. Now define the following cost function

J (k) = ‖qj(k + 1) − qj(k)‖1+
�(d(k) − pT (k)Cqj(k + 1)), (40)

where � is the Lagrange Multiplier. Using )J (k)
)qj (k+1)

= 0 and
)J (k)
)� = 0, we get

d(k) = pT (k)Cqj(k + 1), (41)
and

sign[qj(k + 1) − qj(k)] − �CT p(k) = 0. (42)
By multiplying sign[CT p(k)]pT (k)C from the left, we have

sign[CT p(k)]pT (k)Csign[qj(k + 1) − qj(k)] =
�sign[CT p(k)]pT (k)CCT p(k). (43)

Define the following relations
sign[CT p(k)] = �(k)CT p(k), (44)

and
sign[qj(k + 1) − qj(k)] = 	(k)(qj(k + 1) − qj(k)),

(45)
then, we obtain

�(k)CT p(k)pT (k)C	(k)(qj(k + 1) − qj(k)) =
��(k)CT p(k)pT (k)CCT p(k) (46)

By relocate thematrices and using the fact that pT (k)Cqj(k+
1) − pT (k)Cqj(k) = e(k), we get

	(k)�(k)CT p(k)e(k) = �CT p(k)‖CT p(k)‖1. (47)
Multiplying both sides of Eq. (47) into sign[pT (k)C] from
the left, we get

sign[pT (k)C]	(k)�(k)CT p(k)e(k) = �(‖CT p(k)‖1)2.(48)
Therefore

� =
sign[pT (k)C]	(k)�(k)CT p(k)e(k)

(‖CT p(k)‖1)2
. (49)

We know
sign[qj(k + 1) − qj(k)] = �CT p(k), (50)

then
	(k)(qj(k + 1) − qj(k)) =
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sign[pT (k)C]	(k)�(k)CT p(k)
(‖CT p(k)‖1)2

CT p(k)e(k). (51)

Nowbymultiplying the above equation from the left by	−1(k),
we have

qj(k + 1) − qj(k) =
�(k)sign[pT (k)CCT p(k)]

(‖CT p(k)‖1)2
CT p(k)e(k), (52)

and we obtain

qj(k + 1) = qj(k) + �q
�(k)CT p(k)
� + ‖CT p(k)‖1

e(k). (53)

Finally, the update equation for control points vector in SR-
SAF-NLMS becomes

qj(k + 1) = qj(k) + �q
sign[CT p(k)]
‖CT p(k)‖1

e(k). (54)

The same as SR-NLMS, the update equation for weight co-
efficients in SR-SAF-NLMS is given by

h(k + 1) = h(k) + �ℎ
sign[u(k)]

� + ‖CT p(k)‖1
ṗT (k)Cqj(k)e(k).

(55)
Table 1 shows the Pseudocode of SR-SAF-NLMS algorithm.

7. Computational complexity
Tables 2 and 3 present the exact computational complex-

ity of SAF-NLMS and SR-SAF-NLMS algorithms. These
tables describes the number of multiplications, divisions and
additions at each relation in the update equation process. Ta-
ble 4 compares the computational complexity of the SAF-
LMS, SAF-NLMS, and SR-SAF-NLMS algorithms. It shows
that the number of multiplications in SR-SAF-NLMS-1 is
significantly lower than SAF-NLMS. The SR-SAF-NLMS-2
has close computational complexity to SAF-NLMS. Further-
more, the SR-SAF-NLMS-3 has the lowest computational
complexity. Fig. 4 shows the number of multiplications and
divisions versus filter length (M) for the mentioned algo-
rithms. We observe that SR-SAF-NLMS-1 and SR-SAF-
NLMS-3 have lower computational complexity than other
algorithms especially for large values of M . The CPU run
time has also been presented in Table 5. This table indicates
that the CPU run-time of SR-SAF-NLMS-1 is lower SAF-
LMS and SAF-NLMS algorithm. The SR-SAF-NLMS-3
has the lowest CPU run-time.

8. Simulation results
In this section, several simulation and experiment results

are performed in the context of system identification to vali-
date the performance of the aforementioned SR-SAF-NLMS
algorithm. In all simulations, we show the MSE learning
curves which are evaluated by ensemble averaging over 100

independent trials. Table 6 demonstrates three different learn-
ing algorithms called SR-SAF-NLMS-1, SR-SAF-NLMS-2
and SR-SAF-NLMS-3 algorithms in which, h(k), and qj(k)are updated. In addition, the performance of SR-SAF-NLMS
algorithms have been compared with SAF-LMS and SAF-
NLMS in all experiments. A suitable choice of initial condi-
tions that have always guaranteed excellent results is h(−1) =
�(k) for FIR filter coefficients, while the initial value of spline
control knots q(−1) set to a straight line with unitary slope
[18].
8.1. Experiment 1

The first experiment is performed in order to evaluate
the convergence behavior of proposed SR-SAF-NLMS algo-
rithmswith focusing on identification of an unknownWiener
system which is illustrated in Fig. 2 [18]. The unknown lin-
ear filter is ho = [0.6,−0.4, 0.25,−0.15, 0.1]T and a nonlin-
ear spline function interpolated by a 23 control points LUT
with an uniform interval sampling, Δx = 0.2, defined by

qj,o = [−2.2,−2.0,… ,−1.0,−0.8,−0.91, 0.42,
−0.01,−0.1, 0.1,−0.15, 0.58, 1.2, 1, 1.2,… , 2.2].

(56)
The input signal u(k) consists of 30,000 samples which is
generated by AR(1) process defined by

u(k) = au(k) +
√

1 − a2� (k), (57)
where � (k) is a zero mean white Gaussian noise with uni-
tary variance and a ∈ [0, 1) is a correlation factor which can
interpret the correlation between adjacent samples. In ad-
dition, an additive white Gaussian noise is added to the un-
known system output, setting the signal-to-noise ratio (SNR)
to 30 dB. We also studied the performance of the algorithms
for uniform, binary and Laplace noise distributions [45, 46].
The learning update rates are set to �ℎ = �q = 0.01 and
� = 0.001.

Fig. 5 shows the MSE learning curves of the algorithms
for slightly colored input signal (a = 0.5). This figure com-
pares the convergence rate of SAF-LMS, SAF-NLMS, SR-
SAF-NLMS-1 and SR-SAF-NLMS-2 algorithms. We ob-
serve that SR-SAF-NLMS-1 has close performance to SAF-
NLMS algorithm. Also, the SR-SAF-NLMS-1 has good con-
vergence speed. It is important to note that in SR-SAF-NLMS
algorithms, the sign of input regressors are utilized in update
equation. Therefore, the computational complexity of these
algorithms is lower than SAF-NLMS. Fig. 6 compares the
performance of SR-SAF-NLMS-1 for different distribution
of noise. The results show that the SR-SAF-NLMS-1 has
good performance for all distributions. In Fig. 7, various
values for Δx have been selected. Again, the algorithms are
robust when this parameter changes. As we said, we use
CR-spline basic matrix in the simulations. Fig. 8 compares
the performance of the SAF-NLMS and SR-SAF-NLMS-1
for CR-spline and B-spline basic matrices. We observe that
the results based on CR-spline have better performance. The
tracking performance of the proposed algorithm has been
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studied in Fig. 9. In this simulation the unknown linear fil-
ter is suddenly changed to ho = [0.7,−0.1, 0.5,−0.3, 0.4]T
at iteration 20000. As we see, the SR-SAF-NLMS-1 has a
good tracking performance.
8.2. Experiment 2

The purpose of this setup is to identify a dynamic non-
linear system constitute of three blocks which has been in-
terpreted in [18]. The first and third blocks are two fourth or-
der IIR filter, Butterworth and Chebychev, respectively, with
transfer functions

HB(z) =
(0.2851 + 0.5704z−1 + 0.2851z−2)
(1 − 0.1024z−1 + 0.4475z−2)

×
(0.2851 + 0.5701z−1 + 0.2851z−2)
(1 − 0.0736z−1 + 0.0408z−2)

, (58)

and
HC (z) =

(0.2025 + 0.2880z−1 + 0.2025z−2)
(1 − 1.01z−1 + 0.5861z−2)

×
(0.2025 + 0.0034z−1 + 0.2025z−2)
(1 − 0.6591z−1 + 0.1498z−2)

, (59)

while second block is nonlinearity as follow
y(k) =

2u(k)
1 + |u(k)|2

. (60)

This system is similar to radio frequency amplifiers for satel-
lite communications (high power amplifier), in which the
linear filters model the dispersive transmission paths, while
the nonlinearitymodels the amplifier saturation [18]. The in-
put signal is a zero mean white Gaussian noise with unitary
variance which is generated by AR(1) process. The MSE
learning curves of the proposed SR-SAF-NLMS algorithms
for slightly and highly colored input signal (a = 0.5 and
a = 0.95) are studied in Figs. 10 and 11. The learning up-
date rates are set to�ℎ = �q = 0.01, � = 0.001, andM = 15.
Fig. 10 indicates that the performance of SR-SAF-NLMS
algorithms are close to SAF-NLMS algorithm. The conver-
gence rate of SR-SAF-NLMS algorithms is comparable with
SAF-NLMS. Furthermore, the computational complexity of
SR-SAF-NLMS algorithms is significantly lower than SR-
NLMS. Fig. 11 shows the results for highly colored input
signal. The same performance can be seen in this figure.

In Fig. 12, various values for � have been chosen in SR-
SAF-NLMS-3 algorithm. By increasing the step-size, the
speed of convergence increases but the steady-state MSE in-
creases too. Fig. 13 shows the tracking performance of the
proposed algorithms. For tracking we changeHB(z) to

HB(z) =
(1.3851 + 0.6704z−1 + 1.3851z−2)
(1.1 − 0.2024z−1 + 0.5475z−2)

×
(1.3851 + 0.6701z−1 + 1.3851z−2)
(1.1 − 0.0936z−1 + 0.0608z−2)

, (61)

at iteration 20000. The results indicate that the proposed
algorithms have good tracking ability in this experiment but
the steady-state MSE increases.

Fig. 14 shows the steady-state MSE versus step-size.
The step-size changes from 0.01 to 0.96. We observe that
by increasing the step-size, the steady-state MSE increases.
The SAF-LMS, SAF-NLMS, and SR-SAF-NLMS-1 algo-
rithms are stable for large values of the step-size. But, the
SR-SAF-NLMS-2 and SR-SAF-NLMS-3 are not stable for
large values of the step-size and steady-state MSE extremely
increases. Table 7 presents the steady-state MSE values for
three step-sizes. This table confirms that for small step-size,
all algorithms are stable. For large values, the SR-SAF-
NLMS-1 is still stable and other algorithms are not stable.
Fig. 15 shows the steady-state MSE versus SNR. The SNR
changes from 10 to 50dB. When SNR increases, the steady-
state MSE decreases. Table 8 presents the steady-state MSE
values for various SNR levels.
8.3. Experiment 3

In this respect, the algorithms are verified for complex
recurrent network in the identification of a nonlinear dynamic
system which is delineated with transfer function [18]

y(k) =
y(k − 1)

(1 + y2(k − 1))
+ u3(k). (62)

In addition, the input signal is modelled as
u(k) = 1.79u(k − 1) − 1.85u(k − 2) + 1.27u(k − 3)

−0.41u(k − 4) + � (k),
(63)

where � (k) is a zero mean white Gaussian noise with uni-
tary variance. In order to validate the flexibility of algo-
rithms, the simulations have been done for different input
signal normalization circumstances [0, 0.1], [−0.1, 0.1], and
[−0.25, 0.25]. The parameters of the simulations are set to
M = 15, �ℎ = �q = 0.5,Δx = 0.05, and � = 0.001. Fig. 16shows the results for [0, 0.1]. We observe that the SR-SAF-
NLMS-1 has the same convergence speed with SR-NLMS
and lower steady-sate error than SR-NLMS. Because of sign
operation in SR-SAF-NLMS-1, it is obvious that the compu-
tational complexity of SR-SAF-NLMS-1 is also lower than
SR-NLMS. In this case, the SR-SAF-NLMS-2 has good con-
vergence speed, but the steady-state error is higher than other
algorithms. The performance of the algorithms for various
input signal normalization conditions has been presented in
Figs. 17 and 18. These figures indicate that the SR-SAF-
NLMS-1 has convenient performance for both simulations.
However, the performance of SR-SAF-NLMS-2 is deviated
especially for [−0.25, 0.25]. In Fig. 19, the MSE learning
curves of SR-SAF-NLMS-1 have been compared for differ-
ent conditions. In comparison with SR-NLMS, we observe
that the performance of SR-SAF-NLMS-1 is well for various
situations.
8.4. Experiment 4

In this experiment, the impulse response of the car echo
path with 256 taps (M = 256) has been used as an unknown
system [33]. Fig. 20 indicates the impulse response of the
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car echo path. The input signal is slightly colored input sig-
nal and learning rates are set to �ℎ = �q = 0.5. Fig. 21
shows that the proposed algorithms have good convergence
speed and low steady-state error for large value of M . In
SR-SAF-NLMS-3, both control points and filter coefficients
apply sign operation during the update process. We observe
that the SR-SAF-NLMS-3 as well as other SR-SAF-NLNS
algorithms behave well in this simulation.

9. Conclusion
This paper presents the new spline adaptive filter algo-

rithms called SR-SAF-NSAF. The introduced algorithm was
derived based on a L1-norm constraint. The SR-NSAF uti-
lized the polarity of the input signal to adjust the filter coeffi-
cients. The computational complexity of the proposed algo-
rithm is significantly lower than conventional SAF-NLMS
algorithm. Furthermore, the convergence speed of SR-SAF-
NLMS is close to the SAF-NLMS. The good performance
of SR-SAF-NLMS was demonstrated through several simu-
lation results.

10. Future recommendation
Since the sign regressor method is useful approach in

adaptive filter algorithms, the other important algorithms such
as AP and subband adaptive filter can be developed to es-
tablish the SR-SAF-AP and SR-SAF subband adaptive fil-
ters. Furthermore, the theoretical mean square performance
analysis of the proposed algorithms can be studied and ac-
cordingly, closed form relations for steady-stateMSEwill be
achieved.
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Structure of the desired signal generation. Figure 1
Structure of spline adaptive filter. Figure 2
Structure of SR spline adaptive filter. Figure 3
The number of multiplications and divisions
versus filter length. Figure 4
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
(Experiment 1, input signal: AR(1), a = 0.5). Figure 5
The MSE learning curves of SR-SAF-NLMS1
algorithm for different noise distributions
(Experiment 1, input signal: AR(1), a = 0.5). Figure 6
The MSE learning curves of SR-SAF-NLMS1
algorithm for various Δx values (Experiment 1,
input signal: AR(1), a = 0.5). Figure 7
The MSE learning curves of SAF-NLMS and
SR-SAF-NLMS1 algorithms with CR-spline
and B-spline basic matrices (Experiment 1,
input signal: AR(1), a = 0.5). Figure 8
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS-1 algorithms
for tracking performance (Experiment 1, input
signal: AR(1), a = 0.5). Figure 9
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
(Experiment 2, input signal: AR(1), a = 0.5). Figure 10
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The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
(Experiment 2, input signal: AR(1), a = 0.95). Figure 11
The MSE learning curves of SR-SAF-NLMS-3
algorithm for different � values (Experiment 2,
input signal: AR(1), a = 0.5). Figure 12
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
for tracking performance (Experiment 2, input
signal: AR(1), a = 0.5). Figure 13
The steady-state MSE values versus step-size (�)
(Experiment 2, input signal: AR(1), a = 0.5). Figure 14
The steady-state MSE values versus SNR
(Experiment 2, input signal: AR(1), a = 0.5). Figure 15
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
(Experiment 3, input signal normalization
condition:[0,0.1]). Figure 16
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
(Experiment 3, input signal normalization
condition:[-0.1,0.1]). Figure 17
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
(Experiment 3, input signal normalization
condition:[-0.25,0.25]). Figure 18
The Comparison of MSE learning curve of
SR-SAF-NLMS-1 algorithm with different
input normalization conditions. Figure 19
Impulse response of the car echo path. Figure 20
The MSE learning curves of SAF-LMS,
SAF-NLMS, and SR-SAF-NLMS algorithms
for car echo path unknown system (Experiment
4, input signal: AR(1), a = 0.5). Figure 21

Table 1

For k = 0, 1,… do:

Input signal:

u(k) = [u(k), u(k − 1),… , u(k −M + 1)]T

Output of the linear filter:

r(k) = hT (k)u(k)
Calculate spline local parameters:

p(k) = r(k)
Δx
− [ r(k)

Δx
]

j(k) = [ r(k)
Δx
] + Q−1

2

p(k) = [p3(k), p2(k), p(k), 1]T

ṗ(k) = [3p2(k), 2p(k), 1, 0]T

qj(k) = [qj(k), qj+1(k), qj+2(k), qj+3(k)]T

Generate error signal respect to output of the nonlinear filter:

e(k) = d(k) − pT (k)Cqj(k)
Update equations:

h(k + 1) = h(k) + �ℎ
sign[u(k)]

�+‖CT p(k)‖1
ṗT (k)Cqj(k)e(k)

qj(k + 1) = qj(k) + �q
sign[CT p(k)]
�+‖CT p(k)‖1

e(k)

End.

Table 2

Term × ÷ +

r(k) = hT (k)u(k) M 0 M − 1

p(k) = r(k)
Δx
− [ r(k)

Δx
] 0 1 1

j(k) = [ r(k)
Δx
] + Q−1

2
0 0 2

p(k) = [p3(k), p2(k), p(k), 1]T 3 0 0

ṗ(k) = [3p2(k), 2p(k), 1, 0]T 2 0 0

qj(k) = [qj(k), qj+1(k), qj+2(k), qj+3(k)]T 0 0 0

e(k) = d(k) − pT (k)Cqj(k) 20 0 16

h(k + 1) = h(k) + �ℎ
ṗT (k)Cqj (k)u(k)
�+‖CT p(k)‖2

e(k) M + 9 M 2M + 4

qj(k + 1) = qj(k) + �q
CT p(k)

�+‖CT p(k)‖2
e(k) 5 4 7

ho Ƒ 
u(k) u

T(k)ho Ƒ[uT(k)ho]

+ 

v(k)

d(k)

Figure 1:
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ho Ƒ 
u(k) u

T(k)ho Ƒ[uT(k)ho]

+ 

v(k)

d(k)

h(k) qj(k)

+ 

e(k)

u
T(k)h(k) p

T(k)Cqj(k)

Figure 2:

ho Ƒ 
u(k) u

T(k)ho Ƒ[uT(k)ho]

+ 

v(k)

d(k)

h(k) qj(k)

+ 

e(k)

u
T(k)h(k) p

T(k)Cqj(k)

sign[.] sign[.]

sign(u(k)) sign(C
T
p(k))

Figure 3:

Figure 4:

Figure 5:

Table 3

Term × ÷ +

r(k) = hT (k)u(k) M 0 M − 1

p(k) = r(k)
Δx
− [ r(k)

Δx
] 0 1 1

j(k) = [ r(k)
Δx
] + Q−1

2
0 0 2

p(k) = [p3(k), p2(k), p(k), 1]T 3 0 0

ṗ(k) = [3p2(k), 2p(k), 1, 0]T 2 0 0

qj(k) = [qj(k), qj+1(k), qj+2(k), qj+3(k)]T 0 0 0

e(k) = d(k) − pT (k)Cqj(k) 20 0 16

h(k + 1) = h(k) + �ℎ
sign[u(k)]ṗT (k)Cqj (k)

�+‖CT p(k)‖1
e(k) 5 1 M + 5

qj(k + 1) = qj(k) + �q
sign[CT p(k)]
�+‖CT p(k)‖1

e(k) 1 1 7

Table 4

Algorithm Multiplications Divisions Additions

SAF-LMS 2M + 35 1 3M + 23

SAF-NLMS 2M + 39 M + 5 3M + 29

SR-SAF-NLMS-1 M + 35 6 2M + 30

SR-SAF-NLMS-2 2M + 35 M + 2 3M + 29

SR-SAF-NLMS-3 M + 31 3 2M + 30

Table 5

Algorithm Time(s)

SAF-LMS 12.5

SAF-NLMS 14.6

SR-SAF-NLMS-1 7.4

SR-SAF-NLMS-2 13.7

SR-SAF-NLMS-3 6.8

Figure 6:
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Table 6

Algorithms Update equations

SR-SAF-NLMS-1 h(k + 1) = h(k) + �ℎ
sign[u(k)]

�+‖CT p(k)‖1
ṗT (k)Cqj(k)e(k)

qj(k + 1) = qj(k) + �q
CT p(k)

�+‖CT p(k)‖2
e(k)

SR-SAF-NLMS-2 h(k + 1) = h(k) + �ℎ
ṗT (k)Cqj (k)u(k)
�+‖CT p(k)‖2

e(k)

qj(k + 1) = qj(k) + �q
sign[CT p(k)]
�+‖CT p(k)‖1

e(k)

SR-SAF-NLMS-3 h(k + 1) = h(k) + �ℎ
sign[u(k)]

�+‖CT p(k)‖1
ṗT (k)Cqj(k)e(k)

qj(k + 1) = qj(k) + �q
sign[CT p(k)]
�+‖CT p(k)‖1

e(k)

Table 7

Algorithm �=0.01 �=0.51 �=0.96

SAF-LMS −15.4801 −8.8105 −7.7568

SAF-NLMS −15.4886 −8.5163 −6.5661

SR-SAF-NLMS-1 −14.4180 −8.6572 −7.8254

SR-SAF-NLMS-2 −15.4744 −1.3365 4.9860

SR-SAF-NLMS-3 −14.8380 0.4511 4.3704

Table 8

Algorithm SNR=10 SNR=30 SNR=50

SAF-LMS −8.8302 −15.3394 −15.5453

SAF-NLMS −8.8021 −15.3258 −15.4631

SR-SAF-NLMS-1 −8.6416 −14.1640 −14.3133

SR-SAF-NLMS-2 −8.8135 −15.2765 −15.4658

SR-SAF-NLMS-3 −8.7564 −14.8874 −14.9947

Figure 7:

Figure 8:

Figure 9:
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Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:
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Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:
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