References:
1.Ebrahimi, F. Mechanics of Functionally GradedMaterials and Structures, BoD-Books on Demand(2020). https://doi.org/10.5772/intechopen.81347.
2.Mohammadi, M., Rajabi, M., and Ghadiri, M.“Functionally graded materials (FGMs): A review ofclassifications, fabrication methods and theirapplications”, Processing and Application ofCeramics, 15(4), pp. 319-343 (2021).https://doi.org/10.2298/PAC2104319M.
3.Panchal, Y. and Ponappa, K. “Functionally gradedmaterials: A review of computational materials science algorithms, production techniques, and theirbiomedical applications”, Proceedings of theInstitution of Mechanical Engineers, Part C: Journalof Mechanical Engineering Science, 236(22), pp.10969-10986 (2022). https://doi.org/10.1177/09544062221109261.
4.Babaei, M., Kiarasi, F., Asemi, K., et al. “Functionally graded saturated porous structures: A review”, Journalof Computational Applied Mechanics, 53(2), pp. 297-308 (2022). https://doi.org/10.22059/jcamech.2022.342710.719.
5.Benatta, M.A., Mechab. I., Tounsi, A., et al. “Staticanalysis of functionally graded short beams includingwarping and shear deformation effects”,Computational Materials Science, 44, pp. 765-773(2008). https://doi.org/10.1016/j.commatsci.2008.05.020.
6.Kang, Y.A. and Li, X.F. “Large deflections of a non-linear cantilever functionally graded beam”, Journalof Reinforced Plastics and Composites, 29, pp. 1761-1774 (2010).https://doi.org/10.1177/0731684409103340.
7.Li, S.R., Cao, D.F., and Wan, Z.Q. “Bending solutionsof FGM Timoshenko beams from those of thehomogenous Euler-Bernoulli beams”, AppliedMathematical Modelling, 37, pp. 7077-7085 (2013). https://doi.org/10.1016/j.apm.2013.02.047.
8.Murin, J., Aminbaghai, M., Hrabovský, J., et al.“Modal analysis of the FGM beams with effect of theshear correction function”, Composites Part B:Engineering, 45, pp. 1575-1582 (2013). https://doi.org/10.1016/j.compositesb.2012.09.033.
9.Sitar, M., Kosel, F., and Brojan, M. “Large deflectionsof nonlinearly elastic functionally graded compositebeams”, Archives of Civil and MechanicalEngineering, 14, pp. 700-709 (2014).https://doi.org/10.1016/j.acme.2013.11.007.
10.Kien, N.D. and Gan, B.S. “Large deflections oftapered functionally graded beams subjected to endforces”, Applied Mathematical Modelling, 38, pp.3054-3066 (2014).https://doi.org/10.1016/j.apm.2013.11.032.
11.Sahu, R., Sutar, M., and Pattnaik, S. “A generalizedfinite element approach to the free vibration analysisof non-uniform axially functionally gradedbeam”, Scientia Iranica, 29(2), pp. 556-571 (2022).https://doi.org/10.24200/sci.2021.57274.5151.
12.Reddy, J.N. “Analysis of functionally graded plates”,International Journal for Numerical Methods inEngineering, 47, pp. 663-684 (2000).
13.Ghannadpour, S.A.M. and Alinia, M.M. “Largedeflection behavior of functionally graded platesunder pressure loads”, Composite Structures, 75, pp.67-71 (2006).https://doi.org/10.1016/j.compstruct.2006.04.004.
14.Ovesy, H.R. and Ghannadpour, S.A.M. “Largedeflection finite strip analysis of functionally gradedplates under pressure loads”, International Journal of Structural Stability and Dynamics, 7, pp. 193-211 (2007). https://doi.org/10.1142/S0219455407002241.
15.Chung, Y.L. and Chen, W.T. “Bending behavior ofFGM-coated and FGM-undercoated plates with twosimply supported opposite edges and two free edges”,Composite Structures, 81, pp. 157-167 (2007). https://doi.org/10.1016/j.compstruct.2006.08.006.
16.Khabbaz, R.S., Manshadi, B.D., and Abedian, A.“Nonlinear analysis of FGM plates under pressure loadsusing the higher-order shear deformation theories”,Composite Structures, 89, pp. 333-344 (2009).https://doi.org/10.1016/j.compstruct.2008.06.009.
17.Parida, S. and Mohanty, S. “Nonlinear free vibrationanalysis of functionally graded plate resting on elasticfoundation in thermal environment using higher ordershear deformation theory”, Scientia Iranica,, 26(2),pp. 815-833 (2019). https://doi.org/10.24200/sci.2018.20227.
18.Phuong, H.T., Quoc, T.H., and Hien, H.T. “Static analysis of four-parameter functionally graded plates with general boundary conditions”, Journal of Science andTechnology in Civil Engineering, 13(2), pp. 12-23(2019). https://doi.org/10.31814/stce.nuce2019-13(2)-02.
19.Kumar, P. and Harsha, S.P. “Modal analysis offunctionally graded piezoelectric material plates”,Materials Today: Proceeding, 28(3), pp. 1481-1486(2020). https://doi.org/10.1016/j.matpr.2020.04.825.
20.Toudehdehghan, A. “Static analysis of functionallygraded coated plate on elastic foundation based onLevy method”, IOP Conference Series: MaterialsScience and Engineering, 854, 012036, pp. 1-10(2020). https://doi.org/10.1088/1757-899X/854/1/012036.
21.Ramteke, P., Mehar, K., Sharma, N. et al. “Numericalprediction of deflection and stress responses offunctionally graded structure for grading patterns(power-law, sigmoid, and exponential) and variableporosity (even/uneven)”, Scientia Iranica, 28(2), pp.811-829 (2021).https://doi.org/10.24200/sci.2020.55581.4290.
22.Taghipour, Y. and Baradaran, G.H. “A finite elementmodeling for large deflection analysis of uniform andtapered nanobeams with good interpretation ofexperimental results”, International Journal ofMechanical Sciences, 114, pp. 111-119 (2016). https://doi.org/10.1016/j.ijmecsci.2016.05.006.
23.Lü, C.F., Chen, W.Q., and Lim, C.W. “Elasticmechanical behavior of nano-scaled FGM filmsincorporating surface energies”, Composites Scienceand Technology, 69, pp. 1124-1130 (2009). https://doi.org/10.1016/j.compscitech.2009.02.005.
24.Sharabiani, P.A. and Yazdi, M.R.H. “Nonlinear freevibrations of functionally graded nanobeams withsurface effects”, Composites Part B: Engineering, 45,pp. 581-586 (2013). https://doi.org/10.1016/j.compositesb.2012.04.064.
25.Ansari, R. and Norouzzadeh, A. “Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis”, Physica E:Low-dimensional Systems and Nanostructures, 84, pp.84-97 (2016).https://doi.org/10.1016/j.physe.2016.05.036.
26.Saffari, S., Hashemian, M., and Toghraie, D.“Dynamic stability of functionally graded nanobeambased on nonlocal Timoshenko theory consideringsurface effects”, Physica B: Condensed Matter, 520,pp. 97-105 (2017).https://doi.org/10.1016/j.physb.2017.06.050.
27.Hashemian, M., Foroutan, S., and Toghraie, D.“Comprehensive beam models for buckling andbending behavior of simple nanobeam based onnonlocal strain gradient theory and surface effects”,Mechanics of Materials, 139, pp.1-11 (2019). https://doi.org/10.1016/j.mechmat.2019.103209.
28.Haddad, S., Baghani, M., and Zakerzadeh, M. “Sizedependent analysis of tapered FG micro-bridge basedon a 3D beam theory”, Scientia Iranica, 27(6), pp.2889-2901 (2020). https://doi.org/10.24200/sci.2019.52031.2492.
29.Gholami, M. and Alizadeh, M. “A quasi-3D modifiedstrain gradient formulation for static bending offunctionally graded micro beams resting on Winkler-Pasternak elastic foundation”, Scientia Iranica, 29(1),pp. 26-40 (2022). https://doi.org/10.24200/sci.2021.55000.4019.
30.Taghipour, Y. and Darfarin, S. “A method forcomparison of large deflection in beams”,International Journal of Applied Mechanics andEngineering, 27(4), pp. 179-193 (2022). https://doi.org/10.2478/ijame-2022-0058.
31.Felippa, C.A., Nonlinear Finite Element Methods,Aerospace Engineering Sciences Department,University of Colorado Boulder (2001).
32.Arshid, E., Kiani, A., and Amir, S. “Magneto-electro-elastic vibration of moderately thick FG annular platessubjected to multi physical loads in thermalenvironment using GDQ method by consideringneutral surface”, Proceedings of the Institution ofMechanical Engineers, Part L: Journal of Materials:Design and Applications, 233, pp. 2140-59 (2019). https://doi.org/10.1177/1464420719832626.