
1 

Functionally graded nanobeams subjected to large deflection by 

considering surface effects 

Yasser Taghipour*, Moslem Zeinali 

Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran. 
 

 

ABSTRACT 

In the current study, structurally graded nanobeams with distributed load are subjected to a 

large deflection analysis that takes surface effects into account. The nanobeams Young's 

elasticity modulus changes with thickness under a power-law function. The displacement 

elements are presented, generalization of the Young-Laplace formula is employed to account 

for the surface effects, and the total Lagrangian finite element formulation is utilized to get 

the outcomes by cracking the system of nonlinear differential equations founded on the 

Timoshenko beams theory. The reliability and correctness of the findings are confirmed by 

comparison with previously published publications. The investigation is done into how 

various characteristics, including length-to-thickness ratio, material gradient index, boundary 

conditions, and surface effects, affect the outcomes. The findings demonstrate that, in the 

presence of surface effects, residual surface tension plays a significant influence on the 

deflection of nanobeams. Additionally, a comparison of the power-law and exponential kinds 

of FG distribution is conducted in this study, and it is discovered that the FG materials with 

the power-law distribution are more applicable since they are less susceptible to surface 

effects than the exponential type. 

 

Keywords: Nanobeams; Large Deflection; Functionally Graded Materials; Surface Effects; 

Finite Element Method. 

 

1. Introduction 

Functionally graded (FG) materials are one of the motivating constituents of structures for 

scientists. FG materials are oncoming composites usually produced from two different 

materials, the first one is a metal with high mechanical stiffness while the second one is a 

ceramic with high-temperature resistance. In FG materials, properties vary gradually over the 

volume which notably lets to reduce delamination, stress concentrations, and cracking 

problems observed in classical composite materials [1-4].  
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Various researches on the analysis of FG beams [5-11] and plates [12-21] have been done by 

many scientists, by the classical theory of elasticity. Here, some of the research on the 

analysis of FG beams have been mentioned. Benatta et al. [5] constructed the governing 

equations to assess the behavior of FG short beams under three-point bending using the 

higher-order shear deformation idea and the idea of virtual work. To illustrate the differences 

in material qualities, they employed a basic power-law function. Kang and Li [6] examined a 

cantilever FG beam to comprehend its large deflection behavior. They took into account how 

the structure's reaction will be affected by the material gradient index. The work by Li et al. 

[7] discussed the bending study of FG beams utilizing the Timoshenko beam theory (TBT). 

They acquired the outcomes under various border circumstances. Additionally, Murin et al. 

[8] reported their research on the modal analysis of FG beams and looked at the impact of the 

shear correction factor on it in another paper. Sitar et al. research's on the large deformation 

behavior of FG composite beam is found in [9]. They explored various stress-strain relations 

in the tension and compression domains under the assumption that the beams are made up of 

an infinite number of laminates. Concerning tapered FG beams that were subjected to end 

stresses using the finite element (FE) approach, Kien and Gan [10] produced a significant 

deflection. The Newton-Raphson iterative approach and the arc-length control algorithm 

were both used to produce the large deflection response. 

In addition to the aforementioned, due to its distinctive features, nanostructure applications 

are now expanding quickly. Depending on the kind of material utilized, nanostructures like 

nanobeams and nanoplates may be used in a variety of sectors to make equipment for 

aerospace, medical, and other fields. The researchers searched for a way to accurately 

replicate the behavior of the nanostructure since the conventional elasticity theory is unable 

to account for dimension effects. Based on increasing the surface-to-volume ratio in the 

nanostructures, modified theories of elasticity by the surface effects are suggested for the 

modeling the size effects [22]. 

Various analyses of structures have been conducted by many scientists, based on the theories 

of elasticity particularly FG structures with surface effects [22-27]. To examine the elastic 

mechanical behavior of FG films in the nano-dimension, Lü et al. [23] considered surface 

effects. They offered various numerical examples to determine the impacts of the surface on 

the bending behavior of the nanostructure mentioned above and employed Kirchhoff's theory, 

which is often used for thin structures and disregards the impacts of shear deformation. 

Sharabiani and Yazdi [24] investigated the vibration analysis of FG nanobeams. They used 

the Euler-Bernoulli theory (EBT) and von Karman nonlinear relations. They studied the 



3 

surface influence on the behavior of nanobeams, and they provided the findings for various 

boundary conditions. In their study [25] on the buckling behavior of FG nanoplates in various 

shapes, such as elliptical, circular, and skew ones, Ansari et al. considered the surface stress 

and size impacts. Based on the Eringen and Gurtin-Murdoch hypotheses, they considered size 

effects. In their research, the Mori-Tanaka homogenization technique was used to ascertain 

the useful characteristics of the FG nanostructure. Recent research on the use of FE modeling 

for large deflection analyses of two different kinds of nanobeams was conducted by 

Taghipour and Baradaran [22]. The first kind of nanobeams was prismatic, whereas the 

second kind was tapered. They compared their findings to those of experiments and took into 

account the impact of residual surface stress on the behavior of the nanobeam, as well as the 

influence of surface through the extended Young-Laplace formula in equations. TBT and 

nonlocal theory were utilized by Saffari et al. [26] to examine the dynamic stability of FG 

materials. Based on certain purposes, FG materials' characteristics might vary depending on 

their thickness or other factors. The characteristics are continuously varied, which is their 

main specification. Because of their exceptional qualities under various loading situations, 

their use in many scientific domains is expanding significantly. Saffari et al. [26] evaluated 

the characteristics of the FG nanostructure over its thickness using a power-law function. To 

extract the differential equations, they used Hamilton's principle and von Karman's 

nonlinearity presumptions. The Gurtin-Murdoch continuum theory was also used by them to 

consider the surface tension impacts. Utilizing three alternate model of beams, Hashemian et 

al. [27] produced bending and buckling evaluations of nanobeams. The governing equations 

are developed from nonlocal strain gradient theory that takes surface effects into account. The 

governing equation is cracked by Navier's method. 

In addition to investigating the small deflection of beams with different beam theories 

[5,7,8,11,27-29], generally, two different types of theory may be used to analyze the large 

deflection of beams [6,9,10,22,24,26], it has detailed by Taghipour and Darfarin [30]. There 

are two types of people: the first ignores the shear deformation effect, while the second 

considers it. EBT for beams is one such theory that typically only takes into account the 

deformation of thin beams [6,9]. However, TBT behaves differently and takes shear 

deformations into account, allowing it to be applied to thick beams [10,22]. The nonlinear 

governing differential equations are extracted founded on TBT, which are more precise in 

comparison to other cases, even with nonlinear von Karman strains [24,26]. 

A review of previously published publications in the open literature reveals a lack of research 

on the large deflection of FG nanobeams that accounts for surface effects, based on TBT. The 
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goal of the present work is to use the generalization of Young-Laplace equation to investigate 

the large deflection analysis of FG nanobeams under distributed load and with attention to 

surface effects. The FG nanobeam's characteristics vary in the thickness direction according 

to a power-law function that takes into account the gradient index of material in the displayed 

material distribution. The governing equations are solved using the total Lagrangian FE 

formulation, which can produce the result for a variety of boundary conditions and loading 

types. The impact of the most important factors on the dimensionless deflection of the under-

considered structure is then taken into account once the findings have been validated against 

those that have already been published. The findings of this research might be used to design 

and produce nanostructures with the appropriate qualities to withstand various loading 

circumstances. 

 

2. Mathematical Formulations 

The under-considered models are nanobeams with two different cross-sectional shapes: 

circular and rectangular cross-sections, as previously mentioned and illustrated in Figure 1. t1 

displays the nanobeam thickness for both circular and rectangular shapes. The diameter of the 

circular type is represented by D, while the height and breadth of the rectangular nanobeam 

are shown by t and w, respectively. For both kinds, the source of the coordinate system is 

situated at the center point. 

The deflection of the nanobeam, composed of bulk and surfaces and as a result has various 

characteristics with stress interactions and continuous deformations, is captured by the 

extended Young-Laplace equation as a modified continuum theory. The surface's overall 

stress-strain relationship may be expressed as [22]: 

0 , , 1,2,ij ij ijkl klS i j      (1) 

Where Sijkl is the stiffness tensor, τij represents the second-order stress tensor of surface, 0 is 

the starting stress of surface, and εkl is the strain tensor of surface. For the one-dimensional 

situation of nanobeams, Eq. (1) may be reduced as follows:  

0 ,s xE     (2) 

Where Es is the surface's elasticity modulus and τ0 is the residual surface stress. 

For nanobeams with a high deflection, the distributed load that is parallel to the neutral axis 

and caused by surface effects is seen in Figure 2 and may be expressed as [22]: 

,sq H   (3) 
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The constant parameter i.e., H is given by the cross-section type and is equal to 2τ0w for a 

rectangular cross-section and 2τ0D for a circular one. κθ is the curvature of the neutral axis 

(i.e., its slope with respect to X), and H is a constant parameter. Figure 3 illustrates the 

deformation of the cross-section of a nanobeam based on TBT, where the particle P0 position 

in the undeformed state becomes P after deformation. As a result, the coordinate of a particle 

like P in the situation of deformation may be written as [31]: 

0 sin ,x X u Y     (4) 

0 cos ,y v Y    (5) 

The centroid's displacements in the X and Y directions are indicated in the relationships above 

by u0 and v0, respectively. Additionally, respectively, φ and θ depict the neutral axis slope 

and cross-section rotation. It should be noted that the shear strain in the section is specified as 

(θ− φ) based on TBT. 

The deformation gradient matrix for the preceding equations (Eqs. (4) and (5)) is [31]: 

0

0

1 cos sin
,

sin cos

x x
u΄ YX Y

v΄ Yy y

X Y





  

  

   
             

      
   

F  (6) 

Where the prime sign denotes a derivative with regard to X and κφ represents the curvature 

(that is, the derivative of φ). 

Utilizing the matrix of deformation gradient as shown below, it is possible to create the green 

strain matrix [31]: 

 
1

,
2

XX XYT

YX YY

E E

E E

 
     
  

E F F I  (7) 

that identity matrix is shown by I. 

Additionally, the non-zero elements of the Green strain matrix are defined as follows using 

consistent-linearization methods and small-strain assumptions [31]: 

,XXE e Y    / 2,XY YXE E    (8)  

where [31] defines the average shear strain (that is γ) as well as the center axial strain (that is 

e) as follows: 

 0 01 cos sin 1,e u΄ v΄       0 01 sin cos .u΄ v΄       (9) 

The prior equations, i.e. (9), showed the nonlinearity of the strains versus displacement 
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functions. This nonlinearity is geometrical. If the small deflections are considered, it is 

logical that φ ≪1, and the equations convert to linear form, i.e., e= u'0 and γ =−φ + v'0. 

The internal forces N (resulting from axial force), V (resulting from transverse shear force), 

and M (resulting from bending moment) are calculated by integrating the stress elements 

[31]: 

0

 

 d ,XXA
N S A   

0

 

 d ,XYA
V S A  , 

0

 

 d ,XXA
M YS A   (10) 

where SXX represents the second Piola-Kirchhoff stress under normal conditions, and SXY 

represents the stress under shear conditions. 

In light of this, the vector z, also known as the general stress resultant vector [31]: 

  .
T

N V Mz  (11) 

The general strain vector, in contrast, h is described as [31]: 

.
T

e      
h  (12) 

To establish the relationship between the general strain vector h and the stress resultant 

vector z, the next equation is used [31]: 

  ,z hC  (13) 

The non-zero components of the constitutive matrix C are obtained as: 

 
0

0

11 d ,
h y

h y

C b E y y
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33 d ,
h y
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   (14) 

where h, b, and v represent the structure's half-height, width, and Poisson's ratio. 

Furthermore, as previously mentioned, the structure's characteristics (that is, Young's 

elasticity modulus) are functionally graded along its thickness direction, as illustrated in 

Figure 4, and the next power-law function is taken into account for its fluctuations [32]: 

   2 1 1

1

2 2
,

n
y

E y E E E
h

 
      
 

 (15) 

Here, n is referred to as the material gradient index of FG materials, which depicts how the 

material is distributed across the thickness of the construction. Additionally, the structure's 

top and bottom surfaces' Young's elasticity moduli are E1 and E2, respectively. 

The following relation may be used to produce the applied uniform distributed load q: 

33

3
,

C
q Q

l
  (16) 

where Q stands for the dimensionless evenly distributed load, and l stands for the nanobeam's 

length. Also: 
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3. Total Lagrangian FE Formulation 

The prismatic beam element by two end nodes is regarded as having six degrees of freedom 

(DOF) overall and three DOF at each node in the FE formulation (see Figure 5). The 

following kinds of assembly are used for this DOF and the associated nodal forces [31]: 
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f  (18) 

Here, the nodal displacement is u, and the force vector is f. Additionally, subscripts 1 and 2 

indicate the values of u0(X), v0(X), and φ(X) at the first and second nodes, respectively. 

Additionally, the values of the X-component, Y-component, and external bending moment at 

first (i.e., subscript 1) and second (i.e., subscript 2) nodes are indicated by the variables fxi, fyi, 

and Mi (i=1, 2). 

The following relation may be used to represent fluctuations in internal energy with regard to 

nodal displacements [31]: 

,TU  p u  (19) 

where p is the internal force vector with the following definition [31]: 

0
 d .T

L
X p zB  (20) 

By using the nodal displacement vector u together with Lagrangian shape functions, 

considering the partial derivatives of e, γ, and κφ, and then rewriting u0(X), v0(X), and φ(X), 

we may derive B as follows [31]: 

   
0 1 0 2

0 1 0 2

0

cos    sin   cos sin
1

cos cos     1     cos     cos     1 ,

0 0 1 0 0 1

L N L N

L N e L N e
L

     

   

   
 

       
 
   

B  (21) 

where L0 represents the element's original length before deformation and: 

 1 1 / 2,N     2 1 / 2,N    (22) 
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Here, ξ is the element's natural coordinate, which is between −1 and +1, and is denoted by 

the symbol. The generalized displacement vector's increment, denoted by the symbol δu, is 

determined for each iteration as follows [31]: 

1 , u pK  (23) 

δh= B δu is taken into consideration, the initial variants of z and B are used, and K is the 

tangent stiffness matrix whose components may be calculated employing Eqs. (12) and (13). 

As a result, incremental Eq. (23) may be represented using the iteration form below [22]: 

          
1

1 1
,

r r r r r


      
u u p pK  (24) 

that r displays the number of iterations. The loads are exerted in a series of steps as [22]: 

     1
,

r r r

e s


 p f f  (25) 

In Eq. (25), the force vector fe
(r)

 that results from the external loads and the force vector fs
(r)

 

resulting from the dispersed load (i.e., qs)) are both stated. 

In each phase, fe
(r)

 is also determined based on the external loads, and it is important to 

highlight that it is a conservative load. It should be noted that there have been no 

modifications to any of the steps' iterations. 

However, since fs
(r)

 is caused by a non-conservative load (qs), its specifications (i.e., direction 

and magnitude) are altered by a change in the elements of the nodal displacement vector. 

Thus, fs
(r)

 is modified after each repetition. In the first iteration of the first load step, u
1
 is set 

to be a zero vector, leading to the production of p
1
 and fs

1
. The subsequent repetitions are 

repeated until each load step has the required precision [22]. 

 

4. Results and Discussion 

4.1. Validation Study 

To assure the trustworthiness and correctness of the findings, a comparison between the most 

recent results and those that have already been published is made before the results are 

shown. To this goal, the authors omitted several criteria to make the findings compared to 

other works since the current study is the first analysis with the requirements mentioned 

above, and there is not a similar one in the literature to compare the results with. 

Accordingly, the dimensionless deflections are produced for various l/h ratios and compared 

with the present ones in Figure 6 with respect to Li et al. study [7], which is about an FG 

macro beam with both ends clamped condition. Without surface effects and with n=2, the 

findings in Figure 6 were achieved. Additionally, in this scenario, the beam is under a 
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uniformly distributed load (Q=1). Additionally, the top and bottom surfaces' Young's 

elasticity moduli are estimated to be 70 GPa and 380 GPa, respectively, with a Poisson's ratio 

of 0.23. 

It can be shown that the findings for various length-to-thickness ratios (i.e., l/h) are in 

excellent agreement with one another, with a small amount of variation perhaps arising from 

the use of different beam theories in Li et al. [7] investigation or alternative approaches to 

problem-solving. As a result, it is guaranteed that the formulations, solution process, and 

programmed code are correct. The findings of this investigation are therefore described in the 

paragraphs that follow. 

4.2. Case Study 

The findings of the current effort are now shown by guaranteeing their dependability in a 

more straightforward form. Thus, the results are derived for various boundary conditions 

using the aforementioned material characteristics and taking surface effects into account. The 

beam has a rectangular cross-sectional area that is 100 nanometers wide and 1000 nanometers 

long. 

Figure 7 and Figure 8 show, in the contexts of both ends, clamped and simply supported, 

respectively, how surface stresses affect the dimensionless deflection of the nanobeam. As 

shown in Figure 7, the impact of surface stresses on the deflection of the nanobeam may vary 

depending on the value of τ0 (i.e., residual surface stress, which can be either positive or 

negative). 

Considered to be 0.28 nN/nm and 1.52 nN/nm for the top and bottom surfaces, respectively, 

in Figure 7, it can be observed that accounting for surface effects causes the deflection to 

decrease. Additionally, it can be inferred that when negative values for τ0 are taken into 

account, the dimensionless deflection of the nanobeam behaves differently, i.e., taking into 

account surface effects increased the deflection of the structures. 

Figure 8 depicts a distinct outcome, but for both ends, a straightforward supported nanobeam. 

As can be observed, capturing surface effects, with a positive value for τ0, causes the 

dimensionless deflection to decrease, and raising the l/h ratio causes the nanobeam's 

deflection to decrease. This figure is presented for two values of l/h, which is a criterion of 

nanobeam thickness. 

The dimensionless deflection of a cantilever nanobeam with a positive value for τ0 is shown 

in Figure 9. As is seen from Figure 9, incorporating surface effects with negative values of τ0 

leads to an increase in the structure's deflection. In other words, the direction of the 
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distributed loads caused by surface effects and the direction of the distributed external load is 

aligned in this picture, increasing the deflection. 

Figure 10 shows the impact of the material gradient index n on the dimensionless deflection 

of the FG nanobeam. The stiffness of the whole structure decreases when the material 

gradient index is raised because the characteristics of the nanobeam vary from stiffer to softer 

places. As a result, the nanobeam's deflection improves. Positive residual surface stress levels 

are shown at Figure 10, which causes the findings to decrease when surface effects are taken 

into account. 

The power-law distribution, which complies with Eq. (15), is contrasted with the exponential 

kind of property distribution, which complies with the following function, to assess how the 

two types of material properties distribution affect the outcomes. 

 
 1

2

1
ln

2

2 ,e

E
y h

h E
E y E

           
     (26) 

The two forms of distribution are compared in Figure 11, and it is clear that although the 

overall behavior of the structure in both types is similar, the results based on the power-law 

function are fewer than those based on the exponential function. It should be mentioned that 

n=2 and a cantilever nanobeam were used to get the findings in Figure 11. 

 

5. Conclusions 

The current study presents a large deflection analysis of an FG nanobeam, taking surface 

effects into account. A power-law distribution governs how the Young's elasticity modulus 

changes with thickness of the nanobeam. The generalized Young-Laplace equation accounts 

for the surface effects, and the displacement elements are added founded on TBT, which also 

accounts for the shear deformation effects. The nonlinear differential equations are cracked 

using the total Lagrangian FE formulation, and the outcomes are confirmed using earlier 

published research in the simpler state [22]. The impact of various factors on the results is 

taken into account for various boundary conditions to ensure the accuracy of the findings, and 

it is seen that the sign of residual surface stress plays a significant influence on the deflection 

of the nanobeam. In other words, aimed at simply supported conditions, for residual surface 

stress values that are positive, considering surface effects causes the deflection to decrease, 

but for residual surface stress values that are negative, including surface effects causes the 

deflection to increase, and vice versa aimed at clamped supported conditions. Additionally, 

when the l/h ratio rises, which is a need for nanobeam thickness in all boundary types taken 

into consideration, the deflection decreases, and the stiffness of the nanobeam increases. 



11 

Increasing the material gradient index n, which depicts the material distribution in the 

thickness direction, results in a softer structure and, as a result, increases deflection. A 

comparison between the power-law and exponential forms of FG distribution is conducted to 

reinforce the originality and thoroughness of this work. According to the findings of 

contrasting the deflection of power-law and exponential distributions of material kinds, it can 

be concluded that generally speaking, under the same loading and boundary circumstances, 

the exponential FG type exhibits a greater deflection than the power-law type. Additionally, 

power-law models are more helpful since surface effects on the deflection of this FG 

distribution type are less significant. 
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Figure 1. The nanobeam is in two rectangular and circular examples,  

shown from the cross-section. 
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Figure 2. Owing to the positive residual surface stress, distributed load. 

 

 

Figure 3. Sectional Timoshenko beam model deformation. 

 

 

Figure 4. Schematic of FG nanobeam and properties gradient. 

 

 

Figure 5. The original and current arrangements of the six degrees  

of freedom straight linear beam element.  
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Figure 6. Contrasting macro beam's dimensionless deflection with those of Li et al. [7]. 

 

 

Figure 7. Effects of surface tension and length-to-thickness ratio on  

the deflection of a nanobeam clamped at both ends. 
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Figure 8. Nanobeam was just supported by the length-to-thickness ratio and 

 surface effects on the deflection of both ends. 

 

 

Figure 9. Surface effects and length-to-thickness ratio on cantilever nanobeam deflection. 
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Figure 10. Dimensionless deflection of the nanobeam and the material 

 gradient index of FG materials. 

 

 

Figure 11. Comparing the outcomes for FG materials with power-law and 

 exponential distribution types. 
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