References:
1.Animasaun, I.L., Adebile, E.A., and Fagbade, A.I.“Casson fluid flow with variable thermo-physicalproperty along exponentially stretching sheet withsuction and exponentially decaying internal heatgeneration using the homotopy analysis method”,Journal of the Nigerian Mathematical Society, 35(1),pp. 1–17 (2016). https://doi.org/10.1016/j.jnnms.2015.02.001.
2.Das, D., Roy, M., and Basak, T. “Studies on naturalconvection within enclosures of various (non-square)shapes – A review”, International Journal of Heat andMass Transfer, 106, pp. 356–406 (2017).https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.034.
3.Baïri, A., Zarco-Pernia, E., and García De María, J.M.“A review on natural convection in enclosures forengineering applications. The particular case of theparallelogrammic diode cavity”, Applied ThermalEngineering, 63, pp. 304–322 (2014).https://doi.org/10.1016/j.applthermaleng.2013.10.065.
4.Assad, M. and Rosen, M.A. Design and PerformanceOptimization of Renewable Energy Systems, AcademicPress, 2021.
5.Rostami, S., Aghakhani, S., Pordanjani, A.H., et al. “Areview on the control parameters of natural convection in different shaped cavities with and without nanofluid”, Processes, 8(9), 1011 (2020). https://doi.org/10.3390/pr8091011.
6.Olayemi, O.A., Khaled, A.F., Temitope, O.J., et al.“Parametric study of natural convection heat transferfrom an inclined rectangular cylinder embedded in asquare enclosure”, Australian Journal of MechanicalEngineering, 21(2), pp. 668–681 (2023).https://doi.org/10.1080/14484846.2021.1913853.
7.Bhukya, L. and Nandiraju, S. “A novel photovoltaicmaximum power point tracking technique based ongrasshopper optimized fuzzy logic approach”,International Journal of Hydrogen Energy, 45(16), pp.9416–9427 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.219.
8.Aghighi, M.S., Metivier, C., and Masoumi, H. “Naturalconvection of Casson fluid in a square enclosure”,Multidiscip Model Mater Struct, 16(5), pp. 1245–1259(2020). https://doi.org/10.1108/MMMS-11-2019-0192.
9.Pop, I. and Sheremet, M. “Free convection in a squarecavity filled with a Casson fluid under the effects ofthermal radiation and viscous dissipation”, InternationalJournal of Numerical Methods for Heat and Fluid Flow,27(10), pp. 2318–2332 (2017).https://doi.org/10.1108/HFF-09-2016-0352.
10.Hirpho, M. “Mixed convection of Casson fluid in adifferentially heated bottom wavy wall”, Heliyon, 7(6),e07361 (2021).
https://doi.org/10.1016/j.heliyon.2021.e07361.
11.Ghalambaz, M., Sabour, M., Pop, I., et al. “Freeconvection heat transfer of MgO-MWCNTs/EG hybridnanofluid in a porous complex shaped cavity with MHDand thermal radiation effects”, International Journal ofNumerical Methods for Heat & Fluid Flow, 29(11), pp.4349–4376 (2019). https://doi.org/10.1108/HFF-04-2019-0339.
12.Alzahrani, A.K., Sivasankaran, S., and Bhuvaneswari,M., “Numerical simulation on convection and thermalradiation of Casson fluid in an enclosure with entropygeneration”, Entropy, 22(2), p. 229 (2020). https://doi.org/10.3390/e22020229.
13.Olayemi, O.A., Obalalu, A.M., Odetunde, C.B., et al.“Heat transfer enhancement of magnetized nanofluidflow due to a stretchable rotating disk with variablethermophysical properties effects”, The EuropeanPhysical Journal Plus, 137(3), pp. 393 (2022).https://doi.org/10.1140/epjp/s13360-022-02579-w.
14.Trisaksri, V. and Wongwises, S. “Critical review of heattransfer characteristics of nanofluids”, Renewable andSustainable Energy Reviews, 11(3), pp. 512–523 (2007). https://doi.org/10.1016/j.rser.2005.01.010.
15.Olayemi, O.A., Al‐Farhany, K., Obalalu, A.M. et al.,“Magnetoconvection around an elliptic cylinder placed in a lid‐driven square enclosure subjected to internal heat generation or absorption”, Heat Transfer, 51(6), pp. 4950–4976 (2022). https://doi.org/10.1002/htj.22530.
16.Olayemi, O.A., Salaudeen, A., and Al-farhany, K.“Modelling of heat transfer characteristics around acylindrical-barrier”, International Journal forEngineering Modelling, 35(1), pp. 83–106 (2022). https://doi.org/10.31534/engmod.2022.ri.05b.
17.Ali, M.M., Akhter, R., and Alim, M.A. “Performance offlow and heat transfer analysis of mixed convection inCasson fluid filled lid driven cavity including solid obstacle with magnetic impact”, SN Applied Sciences, 3, pp. 1-5(2021). https://doi.org/10.1007/s42452-021-04243-x.
18.Ghigo, A.R., Lagrée, P.Y., and Fullana, J.M. “A time-dependent non-Newtonian extension of a 1D blood flowmodel”, Journal of Non-Newtonian Fluid Mechanics,253, pp. 36–49 (2018).https://doi.org/10.1016/j.jnnfm.2018.01.004.
19.Aneja, M., Chandra, A., and Sharma, S. “Naturalconvection in a partially heated porous cavity to Cassonfluid”, International Communications in Heat and MassTransfer, 114, 104555 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104555.
20.Rehman, K.U., Malik, A.A., Malik, M.Y., et al.“Numerical study of double stratification in Cassonfluid flow in the presence of mixed convection andchemical reaction”, Results in Physics, 7, pp. 2997–3006 (2017).https://doi.org/10.1016/j.rinp.2017.08.020.
21.Hamid, M., Usman, M., Khan, Z.H., et al. “Dualsolutions and stability analysis of flow and heat transferof Casson fluid over a stretching sheet”, Phys. Lett. SectA Gen at Solid State Phys., 383(20), pp. 2400–2408(2019). https://doi.org/10.1016/j.physleta.2019.04.050.
22.Obalalu, A., Olayemi, O., and Odetunde, C. “Significanceof thermophoresis and brownian motion on a reactiveCasson-Williamson nanofluid past a vertical movingcylinder”, Computational Thermal Sciences: AnInternational Journal, 15(1), pp. 75–91 (2022).https://doi.org/10.1615/computthermalscien.2022041799.
23.Papanastasiou, T.C. and Boudouvis, A.G. “Flows ofviscoplastic materials: Models and computations”,Computers & Structures, 64(1-4), pp. 677–694 (1997).https://doi.org/10.1016/S0045-7949(96)00167-8.
24.Chhabra, R.P. and Richardson J.F., Non-NewtonianFlow and Applied Rheology: Engineering Applications,Butterworth-Heinemann (2011).
25.Mittal, A.S. and Patel, H.R. “Influence of thermophoresisand Brownian motion on mixed convection twodimensional MHD Casson fluid flow with non-linearradiation and heat generation”, Physica A: StatisticalMechanics and its Applications, 537, pp. 122710 (2020). https://doi.org/10.1016/j.physa.2019.122710.
26.Rehman, K.U., Malik, M.Y., Al-Mdallal, Q.M., et al.“Heat transfer analysis on buoyantly convective non-Newtonian stream in a hexagonal enclosure rooted withT-shaped flipper: hybrid meshed analysis”, Case Studiesin Thermal Engineering, 21, 100725 (2020). https://doi.org/10.1016/j.csite.2020.100725.
27.Sivasankaran, S., Bhuvaneswari, M., and Alzahrani,A.K. “Numerical simulation on convection of non-Newtonian fluid in a porous enclosure with non-uniformheating and thermal radiation”, Alexandria EngineeringJournal, 59(5), pp. 3315–3323 (2020). https://doi.org/10.1016/j.aej.2020.04.045.
28.Lam, P.A.K. and Prakash, K.A. “Effect of magneticfield on natural convection and entropy generation inAl2O3/water nanofluid filled enclosure with twinprotruding heat sources”, Journal Thermal Sciences andEngineering Applications, 9(2), pp. 024502 (2017).https://doi.org/10.1115/1.4035810.
29.Das, S., Mondal, H., Kundu, P.K., et al. “Spectral quasi-linearization method for Casson fluid withhomogeneous heterogeneous reaction in presence ofnonlinear thermal radiation over an exponentialstretching sheet”, Multidiscipline Modeling in Materialsand Structures, 15(2), pp. 398–417 (2019). https://doi.org/10.1108/MMMS-04-2018-0073.
30.Kumaran, G. and Sandeep, N. “Thermophoresis andBrownian moment effects on parabolic flow of MHDCasson and Williamson fluids with cross diffusion”,Journal of Molecular Liquids, 233, pp. 262–269 (2017).https://doi.org/10.1016/j.molliq.2017.03.031.
31.Mahanthesh, B., Brizlyn, T., Shehzad, S.A., et al.“Nonlinear thermo-solutal convective flow of Cassonfluid over an oscillating plate due to non-coaxial rotation with quadratic density fluctuation: Exact solutions”,Multidiscipline Modeling in Materials and Structures,15(4), pp. 818–842 (2019). https://doi.org/10.1108/MMMS-06-2018-0124.
32.Kumar, A., Sugunamma, V., and Sandeep, N. “Impactof non-linear radiation on MHD non-aligned stagnationpoint flow of micropolar fluid over a convectivesurface”, Journal of Non-Equilibrium Thermodynamics,43(4), pp. 327–345 (2018).
https://doi.org/10.1515/jnet-2018-0022.
33.Raju, C.S.K., Sandeep, N., Sugunamma, V., et al. “Heatand mass transfer in magnetohydrodynamic Cassonfluid over an exponentially permeable stretchingsurface”, Engineering Science and Technology, anInternational Journal, 19(1), pp. 45–52 (2016).https://doi.org/10.1016/j.jestch.2015.05.010.
34.Hamid, M., Usman, M., Khan, Z.H., et al. “Heat transferand flow analysis of Casson fluid enclosed in a partiallyheated trapezoidal cavity”, International Communicationsin Heat and Mass Transfer, 108, 104284 (2019).https://doi.org/10.1016/j.icheatmasstransfer.2019.104284.
35.Devi, T.S., Lakshmi, C.V., Venkatadri, K., et al.“Simulation of unsteady natural convection flow of acasson viscoplastic fluid in a square enclosure utilizinga mac algorithm”, Heat Transfer, 49(4), pp. 1769–1787(2020). https://doi.org/10.1002/htj.21690.
36.Pasha, P., Mirzaei, S., and Zarinfar, M. “Application ofnumerical methods in micropolar fluid flow and heattransfer in permeable plates”, Alexandria EngineeringJournal, 61(4), pp. 2663–2672 (2022).https://doi.org/10.1016/j.aej.2021.08.040.
37.Pasha, P., Nabi, H., Peiravi, M.M., et al. “Hybridinvestigation of thermal conductivity and viscositychangeable with generation/absorption heat source”,Computational Thermal Sciences: An InternationalJournal, 14(1), pp. 19–30 (2022).https://doi.org/10.1615/ComputThermalScien.2021039390.
38.Abdollahzadeh, M.J., Fathollahi, R., Pasha, P., et al.“Surveying the hybrid of radiation and magneticparameters on Maxwell liquid with TiO2 nanotubeinfluence of different blades”, Heat Transfer, 51(6), pp.4858–4881 (2022). https://doi.org/10.1002/htj.22526.
39.Fathollahi, R., Hesaraki, S., Bostani, A., et al. “Applying numerical and computational methods to investigate thechanges in the fluid parameters of the fluid passing overfins of different shapes with the finite element method”,International Journal of Thermofluids, 15, pp. 100187(2022). https://doi.org/10.1016/j.ijft.2022.100187.
40.Fatehinasab, R., Shafiee, H., Afshari, M., et al. “Hybridsurveying of radiation and magnetic impacts onMaxwell fluid with MWCNT nanotube influence of twowire loops”, Journal of Applied Mathematics andMechanics Zeitschrift für Angewandte Mathematik undMechanik, 103(1), e202200186 (2022).https://doi.org/10.1002/zamm.202200186.
41.Vishnu Ganesh, N., Al-Mdallal Q.M., Öztop H.F., et al.“Analysis of natural convection for a Casson-basedmultiwall carbon nanotube nanofluid in a partiallyheated wavy enclosure with a circular obstacle in thepresence of thermal radiation”, Journal of AdvancedResearch, 39, pp. 167–185 (2022).https://doi.org/10.1016/j.jare.2021.10.006.
42.Selimefendigil, F. and Öztop, H.F. “Thermalmanagement for conjugate heat transfer of curved solidconductive panel coupled with different cooling systemsusing non-Newtonian power law nanofluid applicable tophotovoltaic panel systems”, International Journal ofThermal Sciences, 173, 107390 (2022).https://doi.org/10.1016/j.ijthermalsci.2021.107390.
43.Fares, R., Mebarek-Oudina, F., Aissa, A., et al. “Optimalentropy generation in Darcy-Forchheimer magnetizedflow in a square enclosure filled with silver-based waternanoliquid”, Journal of Thermal Analysis andCalorimetry, 147, pp. 1571–1581 (2022). https://doi.org/10.1007/s10973-020-10518-z.
44.Hafeez, M.B., Krawczuk, M., and Nisar, K.S., et al. “Afinite element analysis of thermal energy inclinationbased on ternary hybrid nanoparticles influenced byinduced magnetic field”, International Communicationsin Heat and Mass Transfer, 135, pp. 106074 (2022).https://doi.org/10.1016/j.icheatmasstransfer.2022.106074.
45.Hafeez, M.B., Khan, M.S., Qureshi, I.H., et al. “Particlerotation effects in Cosserat-Maxwell boundary layer flowwith non-Fourier heat transfer using a new novel approach”, Scientia Iranica, 28(3), pp. 1223–1235 (2021).https://doi.org/10.24200/sci.2020.52191.2583.
46.Aghighi, M.S. and Ammar, A. “Aspect ratio effects inRayleigh-Bénard convection of Herschel-Bulkleyfluids”, Engineering Computations, 34(5), pp. 1658–1676 (2017). https://doi.org/10.1108/EC-06-2016-0227.
47.Hayat, T., Bilal Ashraf, M., Shehzad, S. A., et al. “Mixed convection flow of Casson nanofluid over a stretchingsheet with convectively heated chemical reaction andheat source/sink”, Journals. Applied Fluid Mech, 8(4),pp. 803–813 (2015).https://doi.org/10.18869/acadpub.jafm.67.223.22995.
48.Olayemi, O.A., Obalalu, A.M., Ibitoye, S.E., et al.“Effects of geometric ratios on heat transfer in heatedcylinders: Modelling and simulation”, Nigerian Journalof Technological Development, 19(4), pp. 287–297(2022). https://doi.org/10.4314/njtd.v19i4.1.
49.Adegun, I.K., Jolayemi, T.S., Olayemi, O.A., et al.“Numerical simulation of forced convective heattransfer in inclined elliptic ducts with multiple internallongitudinal fins”, Alexandria Engineering Journal,57(4), pp. 2485-2496 (2018). https://doi.org/10.1016/j.aej.2017.01.014.
50.Olayemi, O.A., Ibitoye, S.E., and Obalalu, A.M.“Numerical analysis of lid driven convective heattransfer and fluid flow around a tilted ellipticalcylinder”, Defect Diffusion Forum, 421, pp. 27–42(2022). https://doi.org/10.4028/p-lj265m.
51.Adebayo Olayemi, O., Temitope Olabemiwo, J.,Osekhoghene Dirisu, J., et al. “Numerical simulation ofheat transfer and fluid flow around a cylinder of varyingcross-section”, Materials Today Proceeding, 65, pp.2128–2137 (2022).https://doi.org/10.1016/j.matpr.2022.05.010.
52.Olayemi, O.A., Al-Farhany, K., Ibitoye, S.E., et al.,“Mixed convective heat transfer in a lid-drivenconcentric trapezoidal enclosure: numericalsimulation”, International Journal of EngineeringResearch in Africa, 60, pp. 43–62 (2022).https://doi.org/10.4028/p-kybe41.
53.Olayemi, O.A., Isiaka, M., Al-Farhany, K., et al.“Numerical analysis of natural convection in aconcentric trapezoidal enclosure filled with a porous medium”, International Journal of Engineering Research in Africa, 61, pp. 129–150 (2022). https://doi.org/10.4028/p-jza9vq.