1. Biazar, J., Farrokhi, L., and Islam, M. "Modeling the pollution of a system of lakes", Appl. Math. Comput., 178(2), pp. 423-430 (2006). https://doi.org/10.1016/j.amc.2005.11.056.
2. Nadeem, S., Abbas Haider, J., and Akhtar, S. "Mathematical modeling of williamson's model for blood flow inside permeable multiple stenosed arteries with electro-osmosis", Sci. Iran., 30(5), pp. 1572-1586 (2023). https://doi.org/10.24200/sci.2023.59837.6457.
3. Biazar, J. and Ebrahimi, H. "Orthonormal bernstein second kind", Int. J. Appl. Math. Res., 9(1), pp. 9-20 (2019).
https://www.sciencepubco.com/index.php/ijamr/article/ view/29636.
4. Kumari, A. and Kukreja, V.K. "Study of 4th order kuramoto-sivashinsky equation by septic hermite collocation method", Appl. Numer. Math., 188, pp. 88-105 (2023). https://doi.org/10.1016/j.apnum.2023.03.001.
5. Khader, M. "Numerical treatment for a ninedimensional chaotic lorenz model with the rabotnov fractional-exponential kernel fractional derivative", Sci. Iran., 31(12), pp. 945-957 (2023). http://scientiairanica.sharif.edu/article 23185 6318ef54f5b4f441c455a3c33e688869.pdf.
6. Biazar, J., Shahbala, M., and Ebrahimi, H. "Vim for solving the pollution problem of asystem of lakes", J. Control Sci. Eng., 2010(1), 829152 (2010). https://doi.org/https://doi.org/10.1155/2010/829152.
7. Yuzbas, S., Sahin, N., and Sezer, M. "A collocation approach to solving the model of pollution for a system of lakes", Math. Comput. Model., 55(3), pp. 330- 341 (2012). https://doi.org/https://doi.org/10.1016/j. mcm.2011.08.007.
8. Haq, E.U. "Analytical solution of fractional model of pollution for a system lakes", CRPASE: Transactions of Applied Sciences, 06(04), pp. 302-308 (2020). http://www.crpase.com/archive/CRPASE-Vol-06- issue-04-89821872.pdf.
9. Khader, M., El Danaf, T.S., and Hendy, A. "A computational matrix method for solving systems of high order fractional differential equations", Appl. Math. Model., 37(6), pp. 4035-4050 (2013). https://doi.org/https://doi.org/10.1016/j.apm.2012.08.009.
10. Prakasha, D. and Veeresha, P. "Analysis of lakes pollution model with mittag-leer kernel", J. Ocean Eng. Sci., 5(4), pp. 310-322 (2020).
https://doi.org/https://doi.org/10.1016/j. joes.2020.01.004.
11. Hatipoglu, V.F. "A novel model for the contamination of a system of three artificial lakes", Discrete Contin. Dyn. Syst., 14(7), pp. 2261-2272 (2021). https://doi.org/10.3934/dcdss.2020176.
12. Ghosh, I., Chowdhury, M., Aznam, S.M., et al. "Measuring the pollutants in a system of three interconnecting lakes by the semianalytical method", J. Appl. Math., 2021(1), 6664307 (2021). https://doi.org/10.1155/2021/6664307.
13. Shiri, B. and Baleanu, D. "A general fractional pollution model for lakes", Commun. Appl. Math. Comput., 4(3), pp. 1105-1130 (2022). https://doi.org/10.1007/s42967-021-00135-4.
14. Yonet, N., Gurbuz, B., and Gokce, A. "An alternative numerical approach for an improved ecological model of interconnected lakes with a fixed pollutant", Comput. Appl. Math. 42(1), p. 56 (2023). https://doi.org/10.1007/s40314-023-02191-3.
15. Podlubny, I. "Fractionl differential equations", mathematics in Science and Engineering, Academic Press, New York (1999).
https://books.google.co.in/books/about/Fractional Differential Equations.html?id=K5FdXohLto0C.
16. Biazar, J. and Ebrahimi, H. "A numerical algorithm for a class of nonlinear fractional Volterra integral equations via modified hat functions", J. Integral Equ. Appl., 34(3), pp. 295-316 (2022). https://doi.org/10.1216/jie.2022.34.295.
17. Ebrahimi, H. and Biazar, J. "Cubic hat-functions approximation for linear and non-linear fractional integral-differential equations with weakly singular kernels", Iran. J. Numer. Anal. Optim., 13(3), pp. 500-531 (2023). https://ijnao.um.ac.ir/article 43722.html.
18. Biazar, J. and Ebrahimi, H. "A one-step algorithm for strongly non-linear full fractional duffing equations", Comput. Methods Differ. Equ., 12(1), pp. 117-135 (2023). https://cmde.tabrizu.ac.ir/article 16317.html.