Entropy generation analysis for chemically reactive flow of Sutterby nanofluid considering radiation aspects

Document Type : Article

Authors

1 - Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia. - Department of Mathematics, Mohi-ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir 12010, Pakistan.

2 Department of Mathematics, Mohi-ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir 12010, Pakistan.

Abstract

Nanofluids show greater heat transfer rate and characteristics of mechanical friction diminution using nano-sized hard elements to fluid. Moreover, regarding the working of heat transfer fluid, nanofluid is widely used in areas of refrigeration, shipping, automobile, chemical industry, energy, electronics, air conditioning, computer, and many other areas to cope heat transference issues. The aforesaid utilizations motivated us to encounter entropy generation aspects for Sutterby nanofluid flow configured by permeable surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian and thermophoretic-diffusions is presented for modeling and investigation. Additionally, (MHD) as well as thermal radiation effects are the part of current work. Here, we have also considered the viscous dissipation aspects. Similarity variable are used to decrease set of nonlinear PDEs into set of ODEs then resolved numerically by using bvp4c algorithm, besides the pertinent parameters are addressed graphically. The physical aspect of fluid flow, temperature, concentration for variation of involved parameters is explained with the help of graphs. Velocity of Sutterby nano fluid has opposite behaviors versus Sutterby fluid parameter and magnetic parameters. Augmented values of Brownian moment, thermophoresis and heat source parameters intensify the temperature of nanofluid. Concentration of Sutterby nanofluid deteriorates for greater Schmidt number.

Keywords

Main Subjects


References:
1. Choi, S.U.S. "Enhancing thermal conductivity of  fluids with nanoparticles", J. Mech. Eng., 66, pp. 99-105 (1995).
2. Oztop, H.F. and Abu-Nada, E. "Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids", Int. J. Heat Fluid Flow, 29, pp. 1326-1336 (2008). DOI: 10.1016/j.ijheatfluid flow.2008.04.009.
3. Sheikholeslami, M., Bandpy, M.G., Ellahi, R., et al. "Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM", Journal of Magnetism and Magnetic Materials, 349, pp. 188-200 (2014). https://doi.org/10.1016/j.jmmm.2013.08.040.
4. Khan, W.A., Khan, M., and Malik, R. "Threedimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption", PLoS ONE, 9(8), e105107 (2014). DOI: 10.1371/journal. pone.0105107.
5. Makinde, O.D., Mabood, F., Khan, W.A., et al. "MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat", J. Mol. Liq., 219, pp. 624-630 (2016). DOI: 10.1016/j.molliq.2016.03.078.
6. Khan, M., Khan, W.A., and Alshomrani, A.S "Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect", Int. J. Heat Mass Transf., 101, pp. 570-576 (2016). DOI: 10.1016/j.ijheatmasstransfer.2016.05.056.
7. Mahanthesh, B., Gireesha B.J., and Athira, P.R. "Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate", Results Phys., 7, pp. 2375-2383 (2017). https://doi.org/10.1016/j.rinp.2017.07.010.
8. Khan, W.A., Irfan, M., Khan, M., et al. "Impact of chemical processes on magneto nanoparticle for the generalized Burgers  fluid", J. Mol. Liq., 234, pp. 201-208 (2017). https://doi.org/10.1016/j.molliq.2017.03.078.
9. Mahanthesh, B., Gireesha, B.J., Shehzad, S.A., et al. "Nonlinear radiated MHD  flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition", Phys. B. Conden. Matt., 537, pp. 98-104 (2018). https://doi.org/10.1016/j.physb.2018.02.009.
10. Khan, W.A., Alshomrani, A.S., Alzahrani, A.K., et al. "Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magnetonano fluid flow", Pramana-J. Phys., 91, p. 63 (2018). doi.org/10.1007/s12043-018-1634-x.
11. Khan, W.A., Sultan, F., Ali, M., et al. "Consequences of activation energy and binary chemical reaction for 3D flow of cross-nanofluid with radiative heat transfer", J. Braz. Soc. Mech. Sci. Eng., 41, p. 4 (2019). doi.org/10.1007/s40430-018-1482-0.
12. Khan, W.A., Waqas, M., Ali, M., et al. "Mathematical analysis of thermally radiative time-dependent Sisko nanofluid flow for curved surface", Int. J. Numer. Methods Heat Fluid Flow, 29(9), pp. 3498-3514 (2019). DOI: 10.1108/HFF-12-2018-0746.
13. Chu, Y.M., Bilal, S., and Hajizadeh, M.R. "Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of  fluid during natural convection in a cavity", Math. Methods Appl. Sci., (2020). https://doi.org/10.1002/mma.6937.
14. Khan, W.A., Ali, M., Shahzad, M., et al. "A note on activation energy and magnetic dipole aspects for Cross nano fluid subjected to cylindrical surface", Appl Nanosci, 10, pp. 3235-3244 (2020). 
15. Khan, M.I., Shah, F., Khan, S.U., et al. "Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features", Numer. Methods Partial Differ. Equ., (2020). doi.org/10.1002/num.22696.
16. Khan, W.A., Farooq, S., Kadry, S., et al. "Variable characteristics of viscosity and thermal conductivity in peristalsis of magneto-Carreau nanoliquid with heat transfer irreversibilities", Comput. Meth. Prog. Bio., 190, 105355 (2020). https://doi.org/10.1016/j.cmpb.2020.105355.
17. Khan, W.A., Sun, H ., Shahzad, M., et al. "Importance of heat generation in chemically reactive flow subjected to convectively heated surface", Indian J Phys, 95, pp. 89-97 (2021). https://doi.org/10.1007/s12648-019-01678-2.
18. Peng, Y., Ghahnaviyeh, M.B., Ahmad, M.N., et al. "Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study", Int. J. Therm. Sci., 163, p. 106863 (2021). DOI: 10.1016/j.ijthermalsci.2021.106863.
19. Chu, Yu-Ming., Nazir, U., Sohail, M., et al. "Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach", Fractal Fract., 5(3) p. 119 (2021). doi.org/10.3390/fractalfract5030119.
20. Khan, W.A., Anjum, N., Waqas, M., et al. "Impact of stratification phenomena on a nonlinear radiative  flow of sutterby nanofluid", J. Mater. Res. Technol., 15(5), pp. 306-314 (2021). DOI: 10.1016/j.jmrt.2021.08.011.
21. Anjum, N., Khan, W.A., Ali, M., et al. "Thermal performance analysis of Sutterby nanoliquid subject to melting heat transportation", International Journal of Modern Physics B., 37(19), p. 2350185 (2022). DOI: 10.1142/S0217979223501850.
22. Hussain, Z., Ali, M., and Khan, W.A. "Significance of chemical processes and non-uniform heat sink/source aspects for time-dependent polymer liquid carrying nanoparticles", Journal of Magnetics, 27(4), pp. 347- 355 (2022). DOI: 10.4283/JMAG.2022.27.4.347.
23. Chu, Y.M., Bashir, S., Ramzan, M., et al. "Modelbased comparative study of magnetohydrodynamics unsteady hybrid nano
fluid  flow between two infinite parallel plates with particle shape effects", Math. Methods Appl. Sci., 46(21), pp. 11568-11582 (2022). DOI: 10.1002/mma.8234.
24. Nazeer, M., Hussain, F., Khan, M.I., et al. "Theoretical study of MHD electro-osmotically  flow of third-grade  fluid in micro channel", Appl. Math. Comput., 420(2), p. 126868 (2022). DOI: 10.1016/j.amc.2021.126868.
25. Chu, Y.M., Shankaralingappa, B.M., Gireesha, B.J., et al. "Combined impact of cattaneo-christov double diffusion and radiative heat flux on bio-convective flow of maxwell liquid configured by a stretched nanomaterial surface", Appl. Math. Comput., 419(1), p.126883 (2022). DOI: 10.1016/j.amc.2021.126883.
26. Khan, W.A., Ahmad, A., Anjum, N., et al. "Impact of nanoparticles and radiation phenomenon on viscoelastic  fluid", Int. J. Mod. Phys. B., 36(05) 2250049 (2022). https://doi.org/10.1142/S0217979222500497.
27. Hussain, Z., Khan, W.A., Muhammad, T., et al. "Dynamics of gyrotactic microorganisms for chemically reactive magnetized 3D Sutterby nano fluid fluid flow comprising non-uniform heat sink-source aspects", Journal of Magnetism and Magnetic Materials, 578, 170798 (2023).
28. Hussain, Z., Alam, M., Pasha, A.A., et al. "Gyrotatic microorganisms analysis for radiative 3D Carreau nanofluid flow configured by activation energy and viscous dissipation", Thermal Science and Engineering Progress, 42(3), 101898 (2023). DOI: 10.1016/j.tsep.2023.101898.
29. Hussain, Z., Khan, W.A., and Ali. M., "Thermal radiation and heat sink/source aspects on 3D magnetized Sutterby  fluid capturing thermophoresis particle deposition", International Journal of Modern Physics B., 37(32), 2350282 (2023). DOI: 10.1142/S021797922350282X.
30. Anjum, N., Khan, W.A., Azam, M., et al. "Significance of bioconvection analysis for thermally stratified 3D Cross nano fluid 
flow with gyrotactic microorganisms and activation energy aspects", Thermal Science and Engineering Progress, 38(6), p. 101596 (2022). DOI: 10.1016/j.tsep.2022.101596.
31. Pasha, A.A., Hussain, Z., Alam, Md.M., et al. "Impact of magnetized non-linear radiative  flow on 3D chemically reactive sutterby nanofluid capturing heat sink/source aspects", Case Studies in Thermal Engineering, 41(8), p. 102610 (2022). DOI:
10.1016/j.csite.2022.102610.
32. Khan, W.A. and Ali, M. "Recent developments in modeling and simulation of entropy generation for dissipative cross material with quartic autocatalysis", Applied Physics A., 125(6), pp. 1-9 (2019). DOI: 10.1007/s00339-019-2686-6.
33. Khan, M.I., Qayyum, S., Chu, Y.M., et al. "Numerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energy", Numer. Methods Partial Differ. Equ., 39(6), (2020). https://doi.org/10.1002/num.22610.
34. Khan, W.A., Khan, M.I., Kadry, S., et al. "Transportation of water-based trapped bolus of SWCNTs and MWCNTs with entropy optimization in a non-uniform channel", Neural. Comput. Applic., 32(17), pp. 13565- 13576 (2020). DOI: 10.1007/s00521-020-04766-1.
35. Shahzad, M., Sun, H., Sultan, F., et al. "Transport of radiative heat transfer in dissipative Cross nanofluid flow with entropy generation and activation energy", Phys. Scr., 94(11), p. 115224 (2019). DOI: 10.1088/1402-4896/ab2caf.
36. Zhao, T.H., Khan, M.I., and Chu, Y.M. "Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian  fluid between two rotating disks", Math. Methods Appl. Sci., 46(3) (2021). DOI: 10.1002/mma.7310.
37. Qayyum, S., Khan, M.I., Masood, F., et al. "Interpretation of entropy generation in Williamson  fluid flow with nonlinear thermal radiation and first-order velocity slip", Math. Methods Appl. Sci., 44(4) pp. 7756-7765 (2020). DOI: 10.1002/mma.6735.
38. Wang, J., Khan, W.A., Asghar, Z., et al. "Entropy optimized stretching  flow based on non-Newtonian radiative nanoliquid under binary chemical reaction", Comput. Meth. Prog. Bio., 188, p. 105274 (2020). DOI: 10.1016/j.cmpb.2019.105274.
39. Khan, W.A., Waqas, M., Kadry, S., et al. "On the evaluation of stratification-based entropy optimized hydromagnetic  flow featuring dissipation aspect and Robin conditions", Comput. Meth. Prog. Bio., 190, p. 105347 (2020). DOI: 10.1016/j.cmpb.2020.105347.
40. Qayyum S., Khan M.I., Masood F., et al. "Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and first-order velocity slip", Math. Methods Appl. Sci., 44(4) (2020). doi.org/10.1002/mma.6735.
41. Shah, F., Khan M.I., Chu Y.M., et al. "Heat transfer analysis on MHD  flow over a stretchable Riga wall considering entropy generation rate: A numerical study", Numer. Methods Partial Differ. Equ., 40(1), e22694 (2020). https://doi.org/10.1002/num.22694.
42. Hussain, Z., Khan W.A., Ali M., et al. "Simultaneous features of nonuniform heat sink/source and activation energy in entropy optimized  flow of Sutterby fluid subject to thermal radiation", International Journal of Modern Physics B., 37(21), p. 2350208 (2023). DOI: 10.1142/S0217979223502089.
43. Waqas, M., Sunthrayuth P., Pasha A.A., et al. "Entropy generation analysis for the radiative  flow of Sisko nanofluid with heat sink/source", Waves in Random and Complex Media, 2022 (2022). doi.org/10.1080/17455030.2022.2094026.