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Abstract. Nanouids show greater heat transfer rate and characteristics of mechanical
friction diminution using nano-sized hard elements to uid. Moreover, regarding the
working of heat transfer uid, nanouid is widely used in areas of refrigeration, shipping,
automobile, chemical industry, energy, electronics, air conditioning, computer, and many
other areas to cope heat transference issues. The aforesaid utilizations motivated us to
encounter entropy generation aspects for Sutterby nanouid ow con�gured by permeable
surface. Moreover, well-known Buongiorno's model capturing same attributes of Brownian
and thermophoretic-di�usions is presented for modeling and investigation. Additionally,
magnetohydrodynamics (MHD) as well as thermal radiation e�ects are the part of current
work. Here, we have also considered the viscous dissipation aspects. Similarity variable are
used to decrease set of nonlinear Partial Di�erential Equations (PDEs) into set of Ordinary
Di�erential Equations (ODEs) then resolved numerically by using bvp4c algorithm, besides
the pertinent parameters are addressed graphically. The physical aspect of uid ow,
temperature, concentration for variation of involved parameters is explained with the help
of graphs.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The nano uids theory was �rstly initiated by Choi [1].
In fact, nanouids show greater heat transport and
features of mechanical friction diminution via intro-
ducing nano solid particles to uid. Nanouid is
more often used for shipping purpose, refrigeration,
energy, chemical industry, electronics, air condition-
ing, computer, and many other regions to measure
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the heat transference phenomenon with lubrication
requirements of great heat encumber of heat replacing
structure which has simple association for economy en-
hancement, reduction and sustainability of heat replac-
ing structure and has extensive applications prospects
and potentially great competence economic value. By
using the features of nanoparticles, Oztop and Abu
Nada [2] studied convection on hot surfaces. For
further expansion, Sheikholeslami et al. [3] conducted
the same study on magnetic nanouids. Khan et al. [4]
deliberated the MHD ow of a Oldroyd-B nanouid
on a radially stretched convective sheet using heat
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generation/absorption. In recent years, the importance
of nano-uids in the �eld of engineering sciences is
growing day by day. In present time, nano materials
have inclusive range of uses in thermal phenomenon,
such as crushing processes, heat exchangers, cooling
engines, aerospace technology and machinery. Makinde
et al. [5] explored the consequence of a radiative heat
of variable viscous nanouid have convective boundary
conditions at the surface. Khan et al. [6] discussed
the ow of nano-uids through a surface of variable
thickness. Adding nanoparticles to the base uid is
best for improving the e�ciency of solar collectors.
Mahanthesh et al. [7] explored the chemically reacting
nanouid ow characteristics used in colloidal analysis
are taken into account using the dipole movement pass-
ing through the permeable vertical plate. Khan et al. [8]
demonstrated e�ects of chemical procedures against
magneto nanoparticle for the generalized Burgers uid.
Mahanthesh et al. [9] discussed the di�erent aspects of
the radiator source and the radiation process as the
nanouid ows with in the turntable. Furthermore,
current investigations under nanouid dynamics con-
tain refs. [10{31].

E�ciency of any system can be a�ected through
the production of entropy because it reduces the
outcomes of the scheme. For well presentation of
system, it is essential to minimize the entropy of
system. Entropy-generation is always perceived in
any irreversible system whereas remains �x in any
reversible system. Moreover, 2nd law of thermo-
dynamics show vital role for the optimization of
entropy-generation. In (1996) the basic idea about
entropy-generation minimization can be functional for
designing lagging/storing methods, power generation,
heat exchangers and preservation methods. Majority
of the entropy generation treats the convection pro-
cedures which exhibit that the entropy generation is
the outcome of liquid resistance as well as heat and
mass transferences phenomenon. In pure conduction
methods, few papers are dealing with entropy gener-
ation. The research of Khan et al. [32{34] noticeably
veri�ed that scholars and progresses in exhibiting and
simulation of entropy-generation for dissipative cross
uid by quartic autocatalysis and transportation of
radiative-heat in dissipative cross model with entropy-
generation as well as activation energy. Recently,
Shahzad et al. [35], Zhao et al. [36] and Qayyum
et al. [37], Wang et al. [38] worked against entropy
generation in uid ow of viscous and non-Newtonian
things focus on di�erent geometries. The consequences
are found using numerical as well as logical techniques
for ow �elds and show pictorially. Total entropy
generation rate is achieved against stretchable Riga
wall, chemical reaction and cylindrical surface. Khan
et al. [39] reected that heat and entropy-generation
in ow featuring Robin condition. In recent times,

Qayyum et al. [40], Shah et al. [41], Hussain et al. [42]
and Waqas et al. [43] considered entropy-generation
under non-linear thermal-radiation, �rst-order velocity
slip and heat as well as mass transference in MHD
stagnation-point ow of a tangent hyperbolic nano-
uid respectively.

The objective of current study is to model the
heat-mass transference aspects of magneto hydrody-
namic. Sutterby nanouid ow toward stretching sheet
with simultaneous features of entropy generation and
thermal radiation is under consideration. The non-
linear ODEs of third-order are obtained via imple-
mentation of self-similar transformations. GDQM
(Generalized Di�erential Quadrature Method) is used
to tackle the equations of the problem. The comparison
tables have been computed through both schemes.
Besides, the graphs are exhibited to communicate the
features of non-dimensional quantities.

2. Formulation

Here, we considered the incompressible Sutterby
nanouid ow over a porous sheet along with mag-
netic �eld. Due to less magnetic Reynolds number
assumption electric-�eld inuence is overlooked. En-
tropy generation e�ect is exploited to measure the
temperature features. The energy equation is based
on thermophoresis, thermal radiation and Brownian
movement inuences.
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with,

u = Uw = cx; v = 0; T = Tw; C = Cw at y = 0; (5)

u = Ue = cx; T ! T1; C ! C1 as y !1: (6)
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Transformations:
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r
c
v
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Tw � T1 ; �(�) =

C � C1
Cw � C1 ; (7)

where f 0(�), �(�), and � (�) represents the
dimensionless velocity �eld, temperature �eld, and
concentration �eld. Eq. (1) is satis�ed identically for
u = cxf

0
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number, thermal radiation parameter, Brownian
motion parameter, thermophoresis parameter, Eckert
number, Schmidt number, dimensionless reaction rate,
dimensionless activation energy, and temperature
di�erence parameter respectively.

2.1. Physical quantities
Following relations are for the resistive force (Cfx) as
well as local Nusselt number (Nux):
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Equating Eqs. (16) and (17) in the Eqs. (14) and (5), we
have following non-dimensional forms of friction force
and local Nusselt number:
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where Rex = xUw
� indicates local Reynolds number.

3. Entropy generation rate

For Sutterby nanoliquid ow the entropy generation
expression in dimensionless form is written as:
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Eq. (20) shows three factors (i) nanouid resistance
ir-reversibility, (ii) heat transference irreversibility and
(iii) di�usive irreversibility. After using the transfor-
mation, Eq. (20) can be reduced into non-dimensional
form written as:
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here NG=�T1SG
�c � T , Br= �U2

w
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C1 , �2=� T
T1 , and

L=RD(Cw�C)
kf represents the entropy-generation rate,

Brinkman number, non-dimensional concentration,
temperature ratio variable, and di�usive variable re-
spectively.

The Bejan number (Be) obtained by Eq. (22) is
shown in Box I.

4. Discussion

In this section, we have examined the inuences of
entropy generation for Sutterby uid. Heat and mass
transference features are explored by seeing features of
Buongiorno's model. In order to resolve the governing
equations, the numerical technique termed as bvp4c
scheme is assimilated to integrate the governing ODEs.
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Box I

Figure 1. Impact of � and M on f 0(�):

Figure 2. E�ects of Nb and Nt upon �(�):

4.1. Velocity distribution f 0(�)

Figure 1(a) and (b) display the features of (�) and (M)
upon f 0(�). In Figure 1(a) the behavior of Sutterby
nanouid parameter (�) against f 0(�) is exposed. Here,
it is perceived that the uid viscosity increases for
larger value of �, therefore enlarged values of � pro-
duces greater resistive forces. So, decline performance
is perceived in velocity pro�le f 0(�). Figure 1(b)
is sketched to show the e�ects of Hartman number
upon f 0(�). Same performance is detected for larger
(M). Physically, Lorentz forces are associated with
Hartman number, for larger values of Hartman num-

ber (M) yields more resistive forces in the transport
phenomenon which declines the velocity �eld f 0(�).

4.2. Temperature �eld �(�)
Figure 2(a) and (b) points the behavior of (Nb) and
(Nt) versus �(�). Figure 2(a) shows the performance
of Brownian motion parameter versus thermal �eld
�(�). A growing behavior is detected for larger value
of (Nb). Physically, when Brownian motion parameter
increases, particles of Sutterby nanouid collide rapidly
due to which temperature �eld boosted. Figure 2(b).
designates the impact of (Nt) upon thermal pro�le �(�).
Here, greater thermophoresis parameter (Nt) yields
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Figure 3. Inuence of Ec and Pr against �(�):

Figure 4. E�ects of R and NB upon �(�) and �(�):

larger �(�). From the physical point of view, in ther-
mophoresis impression insu�cient uid particles are
dragged away from hot segment toward the cold seg-
ment. Thus, huge nano-materials are move away from
the concentrated area which increase the nanouid
temperature. Here, Figure 3(a) exhibits the features of
(Ec) upon temperature �eld. Basically, Eckert number
is the relationship between enthalpy di�erence and K.E
(Kinetic Energy). Actually, when the value of (Ec)
is augmented temperature of nanouid is boosted. It
expands change of K.E into I.E (Internal Energy) via
work-done compared to the viscid nanouid stresses.
Enlargement in Eckert number as a result loss within
heat as of plate to the nanouid. Thus, greater energy
dissipation produces larger temperature �eld. Figure
3(b) exhibited the signi�cance of Prandtl number (Pr)
on thermal �eld �(�) of uid. Because of inverse
proportion among Prandtl number (Pr) plus thermal
di�usivity temperature pro�le �(�) displays decaying
behavior for greater Pr.

4.3. Concentration pro�le �(�)
The e�ects of thermal radiation parameter (R) upon
thermal �eld is exposed in Figure 4(a). Actually,
growth in thermal radiation (R) boosts �(�). Physi-
cally, radiation procedure yield extra heat within the
working Sutterby nanouid thus �(�) as well as asso-
ciated thermal layer thickness augments. Moreover,
�(�) and related concentration layer diminish when
Brownian motion (Nb) is intensi�es (see Figure 4(b)).
Figure 5(a) is considered to analyze the impact of chem-
ical reaction parameter (�) upon concentration pro�le
�(�) it is observed that concentration pro�le boosts for
larger calculation of chemical reaction parameter (�).
Furthermore, use of reactive species drops speedily for
larger value of (�). Moreover, in Figure 5(b) when
value of di�usive variable (L) intensi�es a diminishing
performance is noticed for entropy generation NG.

4.4. Entropy generation NG and Bejan
number (Be)
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Figure 5. Impact of � and L upon �(�) and NG.

Figure 6. Impacts of �1 and R upon NG.

Attributes of (�1) and (R) on NG shown in Fig-
ure 6(a) and (b). Figure 6(a) exhibits the e�ects of
dimensionless temperature ratio variable (�1) on NG.
Here, entropy generation NG enhances for larger (�1).
Clearly, NG increases when temperature of nanouid
enhances for larger dimensionless temperature ratio
variable. Furthermore, Figure 6(b) demonstrated the
inuence of (R) versus entropy generation NG. It is
evaluated that the entropy generation NG rises when
thermal radiation parameter R is intensi�es. Physi-
cally, when internal energy of nanouid is increases
then the entropy generation NG augments. Figure 7(a)
and (b) depicts the impacts of (Br) versus entropy
generation rate NG as well as on Bejan number (Be).
Physically, Brinkman number has ability of transfer-
ring heat in owing liquid toward the heat transmission
within molecular conduction i.e in polymer processing.
Heat transport in molecular conduction is more than
the heat conduction in viscid e�ects. So, motion
of nanouid particles yields extra heat in the close
layers which augments the entropy NG and system

disorderness (see Figure 7(a)). Figure 7(b) display that
the Be drops for larger value of Brinkman number. The
fact behind this trend is that greater Brinkman number
corresponds to rise entropy rate which decays the Bejan
number (Be). Figure 8(a) and (b) displays the e�ects
of magnetic parameter on entropy generation rate NG
and Bejan number (Be). Therefore, it is perceived
that NG increases for growing value of magnetic pa-
rameter (M). Actually, increase in (M) yield further
Lorentz force which rises the resistance in nanouid
ow results entropy generation rate NG enhances (see
Figure 8(a)). However, greater Hartmann number (M)
displays decay in (Be). Here, nanouid resistance is-
reversibility has strong impacts upon the heat and mass
transmission irreversibility thus Bejan number (Be)
decays (see Figure 8(b)).

4.5. Consequence of heat and mass
transference rate

Table 1 represents the impacts of few physical param-
eters for heat as well as mass transference. It is seen
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Figure 7. E�ects of Br versus NG and Be.

Figure 8. Consequence of M versus NG and Be.

that heat transmission rate boosts for higher value of
Pr, M , R, and Sc whereas it decreases for higher value
of Ec.

5. Final remarks

Entropy generation rate within MHD mixed convective
ow of Sutterby nanoliquid is inspected mathemati-
cally in the existence of viscous-dissipation plus ther-
mal radiation. Following are the key points of current
work:

� Sutterby nanouid velocity pro�le is declining func-
tion of magnetic parameter;

� Intensi�cations within the values of Ec, R, Nb, and
Nt increases the nanouid temperature;

� Sutterby nanouid concentration decreased for
greater Nb;

� Greater Lorentz force give augmentation to the
entropy generation while declines for Bejan number;

� As compare to Bejan number, higher Br give rise to
entropy generation rate.

Nomenclature

u; v Velocity components
x; y Space coordinates
� Density of uid
� Kinematic viscosity
� Dynamic viscosity
B0 Uniform magnetic �eld strength
(�c)f Heat capacity of uid

� Ratio of heat capacity
(�c)p E�ective heat capacity

��� Stefan-Boltzmann constant
� Thermal di�usivity
kf Thermal conductivity
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Table 1. Values of Local Nusselt number and Sherwood
number for di�erent values of the parameters
Pr; M; Nb; Sc and when M = � = Nt = � = 0:1.

Pr M Nb Sc Ec ��0 (0) ��0 (0)

0.5 0.1 0.1 0.1 0.1 �0:27252 �0:340371

0.6 �0:30199 �0:339589

0.7 �0:35901 �0:325297

0.5 0.2 �0:28458 �0:330763

0.3 �0:27805 �0:330543

0.4 �0:272 �0:33035

0.2 �0:28518 �0:337229

0.3 �0:2788 �0:339316

0.4 �0:27252 �0:340371

0.2 �0:29141 �0:351474

0.3 �0:29118 �0:372936

0.4 �0:29096 �0:395071

0.2 �0:27107 �0:332987

0.3 �0:25047 �0:334961

0.4 �0:22987 �0:336936

cp Speci�c heat capacity
DB ; DT Brownian, thermophoresis
T;C Temperature, concentration
T1 Ambient temperature
C1 Ambient concentration
Tw Surface temperature
Cw Surface concentration
kr2 Reaction rate
Ea Activation energy
� Boltzmann constant
kc Rate of chemical reaction
m Fitted rate constant
c Dimensional constant
� Dimensionless variable
Uw Stretching velocity
Pr Prandtl number
M Magnetic parameter
Nr Buoyancy ratio parameter
GDQM Generalized Di�erential Quadrature

Method
R Thermal radiation parameter
Nb Brownian motion parameter
Nt Thermophoresis parameter
Ec Eckert Number
Sc Schmidth Number
� Reaction rate

E Activation energy
� Temperature di�erence parameter
�w Wall shear-stress
qw Wall heat-ux
f Dimensionless velocitie
� Dimensionless temperature
� Dimensionless concentration
NG Entropy generation rate
�1 Temperature ratio parameter
�2 Concentration ratio parameter
L Di�usive variable
Br Brinkman number
Cfx Skin friction
Nux Local Nusselt number
Rex Local Reynolds number
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