References:
1.Chopra, A.K., Dynamics of Structures, 4th Ed., Prentice Hall(2012).
2.Houbolt, J.C. “A recurrence matrix solution for the dynamicresponse of elastic aircraft”, Journal of the AeronauticalSciences, 17(9), pp. 540-550 (1950). https://doi.org/10.2514/8.1722.
3.Newmark, N.M. “A method of computation for structuraldynamics”, Journal of the Engineering Mechanics DevisionASCE, 85(3), pp. 67-94 (1959). https://doi.org/10.1061/JMCEA3.0000098.
4.Wilson, E.L., Farhoomand, I., and Bathe, K.J. “Nonlineardynamic analysis of complex structures”, EarthquakeEngineering and Structural Dynamics, 1(3), pp. 241-252(1972). https://doi.org/10.1002/eqe.4290010305.
5.Leontyev, V. “Direct time integration algorithm withcontrollable numerical dissipation for structural dynamics: Two-step Lambda method”, Applied Numerical Mathematics, 60(3),pp. 277-292 (2010). https://doi.org/10.1016/j.apnum.2009.12.005.
6.Bathe, K.J. and Noh, G. “Insight into an implicit timeintegration scheme for structural dynamics”, Computers andStructures, 98, pp. 1-6 (2012). https://doi.org/10.1016/j.compstruc.2012.01.009.
7.Noh, G. and Bathe, K.J. “Further insights into an implicit timeintegration scheme for structural dynamics”, Computers &Structures, 202, pp. 15-24 (2018). https://doi.org/10.1016/j.compstruc.2018.02.007.
8.Wen, W.B., Jian, K.L., and Luo, S.M. “An explicit timeintegration method for structural dynamics using septuple Bβspline functions”, International Journal for Numerical Methods in Engineering, 97(9), pp. 629-657 (2014). https://doi.org/10.1002/nme.4599.
9.Wen, W.B., Luo, S.M., and Jian, K.L. “A novel time integration method for structural dynamics utilizing uniform quintic B-spline functions”, Archive of Applied Mechanics, 85(12), pp.1743-1759 (2015). https://doi.org/10.1007/s00419-015-1016-5.
10.Rostami, S., Shojaee, S., and Saffari, H. “An explicit timeintegration method for structural dynamics using cubic B-splinepolynomial functions”, Scientia Iranica, 20(1), pp. 23-33(2013). https://doi.org/10.1016/j.scient.2012.12.003.
11.Shojaee, S., Rostami, S., and Abbasi, A. “An unconditionallystable implicit time integration algorithm: Modified quartic B- spline method”, Computers and Structures, 153, pp. 98-111 (2015). https://doi.org/10.1016/j.compstruc.2015.02.030.
12.Muradova, A.D. “A time spectral method for solving thenonlinear dynamic equations of a rectangular elastic plate”,Journal of Engineering Mathematics, 92(1), pp. 83-101 (2015).https://doi.org/10.1007/s10665-014-9752-z.
13.Ding, Z., Li, L., Hu, Y., et al. “State-space based time integration method for structural systems involving multiple nonviscousdamping models”, Computers and Structures, 171, pp. 31-45(2016). https://doi.org/10.1016/j.compstruc.2016.04.002.
14.Hadianfard, M.A. “Using integrated displacement method totime-history analysis of steel frames with nonlinear flexibleconnections”, Structural Engineering and Mechanics, 41(5),pp. 675-689 (2012). https://doi.org/10.1016/j.compstruc.2016.04.002.
15.Wen, W.B., Wei, K., Lei, H.S., et al. “A novel sub-stepcomposite implicit time integration scheme for structuraldynamics”, Computers and Structures, 182, pp. 176-186(2017). https://doi.org/10.1016/j.compstruc.2016.11.018.
16.Zhang, J., Liu, Y., and Liu, D. “Accuracy of a composite implicit time integration scheme for structural dynamics”, InternationalJournal for Numerical Methods in Engineering, 109(3), pp.368-406 (2017). https://doi.org/10.1002/nme.5291.
17.Kwon, S.B. and Lee, J.M. “A non-oscillatory time integrationmethod for numerical simulation of stress wave propagations”,Computers and Structures, 192, pp. 248-268 (2017).https://doi.org/10.1016/j.compstruc.2017.07.030.
18.Xing, Y., Zhang, H., and Wang, Z. “Highly precise timeintegration method for linear structural dynamic analysis”,International Journal for Numerical Methods in Engineering,116(8), pp. 505-529 (2018). https://doi.org/10.1002/nme.5934.
19.Kim, W. and Choi, S.Y. “An improved implicit time integration algorithm: The generalized composite time integrationalgorithm”, Computers and Structures, pp. 341-354 (2018). https://doi.org/10.1016/j.compstruc.2017.10.002.
20.Zhang, H.M. and Xing, Y.F. “Two novel explicit timeintegration methods based on displacement-velocity relationsfor structural dynamics”, Computers and Structures, 221, pp.127-141 (2019). https://doi.org/10.1016/j.compstruc.2019.05.018.
21.Yuan, P., Li, D., Cai, C.S., et al. “Time integration method withhigh accuracy and efficiency for structural dynamic analysis”,Journal of Engineering Mechanics, 145(3), 04019008 (2019).https://doi.org/10.1061/(ASCE)EM.1943-7889.0001574.
22.Kim, W. “A simple explicit single step time integrationalgorithm for structural dynamics”, International Journal forNumerical Methods in Engineering, 119(5), pp. 383-403 (2019). https://doi.org/10.1002/nme.6054.
23.Kim, W. and Reddy, J.N. “Novel explicit time integrationschemes for efficient transient analyses of structural problems”,International Journal of Mechanical Sciences172, 105429(2020). https://doi.org/10.1016/j.ijmecsci.2020.105429.
24.Noh, G. and Bathe, K.J. “The Bathe time integration methodwith controllable spectral radius: The ρ∞-Bathe method”,Computers & Structures, 212, pp. 299-310, (2019). https://doi.org/10.1016/j.compstruc.2018.11.001.
25.Malakiyeh, M.M., Shojaee, S., and Bathe, K.J. “The Bathe time integration method revisited for prescribing desired numericaldissipation”, Computers and Structures, 212, pp. 289-298(2019). https://doi.org/10.1016/j.compstruc.2018.10.008.
26.Li, J. and Yu, K. “A novel family of composite sub-stepalgorithms with desired numerical dissipations for structuraldynamics”, Archive of Applied Mechanics, 90(4), pp. 737-772(2020).
27.Nguyen, D.T., Li, L., and Ji, H. “Stable and accurate numericalmethods for generalized Kirchhoff–Love plates”, Journal ofEngineering Mathematics, 130(1), pp. 1-26 (2021). https://doi.org/10.1007/s10665-021-10163-x.
28.Subbaraj, K. and Dokainish, M.A. “A survey of direct time-integration methods in computational structural dynamics-II.Implicit methods”, Computers and Structures, 32(6), pp. 1387-1401 (1989).
29.Mosqueda, G. and Ahmadizadeh, M. “Iterative implicitintegration procedure for hybrid simulation of large nonlinearstructures”, Earthquake Engineering and Structural Dynamics,40(9), pp. 945-960 (2011). https://doi.org/10.1002/eqe.1066.
30.Jia, C., Bursi, O.S., Bonelli, A., et al. “Novel partitioned timeintegration methods for DAE systems based on Lβstable linearlyimplicit algorithms”, International Journal for NumericalMethods in Engineering, 87(12), pp. 1148-1182 (2011). https://doi.org/10.1002/nme.3153.
31.Ohno, N., Tsuda, M., and Kamei, T. “Elastoplastic implicitintegration algorithm applicable to both plane stress and three-dimensional stress states”, Finite Elements in Analysis andDesign, 66, pp. 1-11 (2013). https://doi.org/10.1016/j.finel.2012.11.001.
32.Zhang, H., Zhang, R., Zanoni, A., et al. “Performance of implicit A-stable time integration methods for multibody systemdynamics”, Multibody System Dynamics, 54(3), pp. 263-301(2022). https://doi.org/10.1007/s11044-021-09806-9.
33.Dokainish, M.A. and Subbaraj, K. “A survey of direct time-integration methods in computational structural dynamics-I.Explicit methods”, Computers & Structures, 32(6), pp. 1371-1386 (1989). https://doi.org/10.1016/0045-7949(89)90314-3.
34.Chang, S.Y. “Explicit pseudodynamic algorithm withunconditional stability”, Journal of Engineering Mechanics,128(9), pp. 935-947 (2002). https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935).
35.Hulbert, G.M. and Chung, J. “Explicit time integrationalgorithms for structural dynamics with optimal numericaldissipation”, Computer Methods in Applied Mechanics andEngineering, 137(2), pp. 175-188 (1996). https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935).
36.Humar, J. Dynamics of Structures, CRC press, (2012).https://doi.org/10.1201/b11772.
37.Coello, C.C. and Lechuga, M.S. “MOPSO: A proposal formultiple objective particle swarm optimization”, Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu,(2002). https://doi.org/10.1109/CEC.2002.1004388.
38.Zhang, C., Long, K., Yang, X., et al. “A transient topologyoptimization with time-varying deformation restriction viaaugmented Lagrange method”, International Journal ofMechanics and Materials in Design, 18(3), pp. 1-18 (2022). https://doi.org/10.1007/s10999-022-09598-6.
39.Burlayenko, V.N. and Sadowski, T. “Transient dynamicresponse of debonded sandwich plates predicted with finiteelement analysis”, Meccanica, 49(11), pp. 2617-2633 (2014). https://doi.org/10.1007/s11012-014-9924-y.
40.Long, K., Yang, X., Saeed, N., et al. “Topology optimization oftransient problem with maximum dynamic response constraintusing SOAR scheme”, Frontiers of Mechanical Engineering,16(3), pp. 593-606, (2021). https://doi.org/10.1007/s11465-021-0636-4.