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Abstract In this paper, the accuracy and stability of an implicit numerical method (ζ-method) is 

investigated. It is shown that ζ-method presents high accuracy and efficiency for the dynamic response analysis by 

assuming a sinusoidal interpolation function for acceleration between two successive time steps. Assuming a 

sinusoidal distribution of acceleration results in similar types of equations for velocity and displacement since the 

integration of a sine term contains sine and cosine terms. For this method, a parameter (denoted as ζ) is used as the 

frequency of the sinusoidal interpolation function which significantly affects the accuracy and stability of the 

method. The equations and derivations are presented in detail and the best value for ζ is obtained through multi-

objective optimization procedures to minimize the errors. The accuracy and stability of the method have been 

investigated in terms of period elongation, amplitude decay, and spectral radius. Finally, the method has been 

evaluated by several numerical examples (linear and nonlinear SDOF, and linear MDOF). In some examples, it was 

observed that the ζ-method yielded better results than other numerical methods. Moreover, an interpolated version of 

the method was introduced which was more accurate in comparison with similar methods with equal execution time. 

    

 

Keywords: Numerical time integration methods, Stability analysis, Accuracy analysis, Optimization, Spectral radius 

 

 

1   Introduction 

 

Time integration methods are numerical techniques that use some approximations and assumptions to solve the 

governing differential equation at each time step when the response history of a system is of interest. They are 

divided into implicit and explicit groups. In implicit methods, the governing differential equation at time step i + 1 is 

used to find the response of the ith time step. In explicit methods, the governing differential equation at time step i is 

used [1]. For time integration methods, there are key points required to investigate such as accuracy, stability, and 

consistency. Accuracy is usually defined as period elongation and amplitude decay, i.e., the obtained periods and 

amplitudes are greater or smaller, compared to the exact solutions. Stability is a criterion representing whether the 

cumulative errors at successive time steps cause unbounded solutions or not. Some of the time integration methods 

are unconditionally stable which is desirable, i.e., no matter what the time step is, the response is always bounded. 

Consistency is another requirement for any time integration method to be convergent. It is evaluated by calculating 
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local truncation error, which is the difference between the actual solution and the numerical solution at one time 

step. 

 Several researchers have proposed different time integration methods. Each method has some advantages and 

some disadvantages in terms of stability, accuracy, and consistency. In 1950, Houbolt’s method was introduced as 

an implicit method to solve the response of an airplane subjected to dynamic loads [2]. This method is 

unconditionally stable, while it has greater amplitude decays and period elongations compared to up-to-dated 

methods. In 1959, Newmark proposed an implicit method based on the two constants β and γ representing the 

different interpolation functions of acceleration. Newmark’s method has shown a satisfactory performance from the 

stability and accuracy viewpoints and is vastly used in structural dynamics [3]. Two famous formulations of 

Newmark’s method are linear acceleration and average acceleration. The former shows higher accuracy while the 

latter is unconditionally stable. Wilson’s implicit method was introduced in 1972 [4]. The method is a step-by-step 

technique to evaluate the dynamic response of structures with physical and geometrical nonlinearities. The method 

was stable for all time steps introducing a predictable error for a specified time step. In 2010, Leontyev proposed the 

two-step Lambda method with controllable numerical dissipation [5]. The method is an unconditionally stable 

implicit level symmetric (LS) method which results in strong dissipation of high-frequency modes. In 2012, Bathe 

and Noh proposed a useful implicit time integration method for linear and nonlinear systems and presented its 

accuracy, stability, and spectral radius [6]. They examined their proposed method through a very flexible and a very 

stiff system, getting superior results for both cases. Later, they added further insights to their method by using the 

parameter “time step splitting ratio” and showed that by changing this parameter, they can obtain large amplitude 

decays which might be desirable for some problems. [7].  

 In 2014, Wen et al. proposed an explicit numerical method based on the interpolation polynomial functions of 

septuple B-spline and investigated its stability and accuracy [8]. By use of adjustable parameters, they showed that a 

high-frequency response can be damped out without inducing excessive algorithmic damping in important low 

frequency modes. In 2015, Wen et al. suggested a novel time integration method by employing uniform quintic B-

spline polynomial interpolation. As a result, using two adjustable parameters, the method was formulated for solving 

the differential equation of motion governing a single-degree-of-freedom (SDOF) system and then, was generalized 

for a multi-degree-of-freedom (MDOF) system [9]. The proposed method not only had higher computation 

efficiency but also possessed better numerical dissipation characteristics. In 2013, Rostami et al. proposed an 

explicit time integration method for structural dynamics using cubic B-spline polynomial functions for MDOF 

systems [10]. This method was conditionally stable, it was faster, but had the same accuracy as the Newmark linear 

acceleration method. Later in 2015, Shojaee et al. presented an unconditionally stable numerical method as a 

modified quartic B-spline method which had good accuracy with lower period elongation and amplitude decay [11]. 

In 2015, Muradova proposed a time spectral method for solving the nonlinear dynamic equations of a rectangular 

elastic plate. They used the Runge–Kutta method and the Newmark-β method to solve the nonlinear ordinary 

differential equations [12]. In 2016, Ding et al. proposed a state-space-based method to solve structural dynamics 

problems with multiple non-viscous damping models [13]. They obtained better results in terms of accuracy and 

efficiency compared to some implicit methods.  In 2012, Hadianfard used the integrated displacement method to 

improve the step-by-step nonlinear response of the structure [14]. Their proposed method permitted longer time 

steps and reduced computational costs. 

 In 2017, Wen et al. presented an implicit sub-step composite method. Their method had good accuracy, 

stability, numerical dissipation/dispersion characteristics, and computational efficiency and showed a good 

performance in wave propagation analysis [15]. In 2017, Zhang et al. studied an implicit two-sub-step composite 

time integration method for the dynamics of structures. They also evaluated the truncation errors of the response 

parameters with a systematic procedure [16]. Kwon and Lee proposed a time integration scheme in 2017 to solve 

problems dealing with stress wave propagation. Their method presented non-oscillatory solutions for such problems 

[17]. 

 In 2018, Xing et al. proposed a strategy to construct a highly accurate and efficient time integration method for 

linear time-invariant systems. They employed the multi-sub-step notion and reduced the rounding errors and the 

computational costs [18]. In 2018, Kim and Choi developed an improved implicit time integration method using the 

weighted residual method. Their method enjoys algorithmic dissipation control, can also be used for nonlinear 

systems, and represented improved results in comparison with Bathe method [19]. 

 In 2019, Zhang and Xing proposed two explicit methods based on displacement-velocity relations for the 

dynamics of structures [20]. The method presents second-order accuracy with good stability and performed better 

for some numerical examples in comparison with some up-to-date explicit methods. In 2019, Yuan et al. presented a 

highly accurate and efficient explicit time integration method for typical problems of structural dynamics. They used 

optimization to find the best values of the parameters they defined in their method [21]. Their proposed method has 
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second-order consistency, with a superior stability limit while damping exists. They got better computational 

efficiency in comparison with the up-to-date methods in their literature. In 2019, Kim proposed a single-step explicit 

numerical method based on the Newmark approximations and verified its performance by linear and non-linear 

examples [22]. Their method is second-order consistent for linear and nonlinear velocity dependent systems and 

could present slightly better results compared to existing methods. In 2020, Kim and Reddy developed four sets of 

two-stage explicit numerical methods using truncated Taylor’s series expansions of displacement and velocity [23]. 

They obtained an improved order of consistency as three of their schemes had much smaller period elongations 

compared with any existing time-integration method. In 2019, Noah and Bathe proposed the sub-step ρ∞-Bathe 

method with controllable spectral radius. Their goal was to prescribe the period elongation and amplitude decay in 

an optimum manner [24]. With controllable spectral radius and time splitting ratio, they showed that it is possible to 

have zero to very large period elongations, and correspondingly small to very large amplitude decays while keeping 

the second-order consistency. In 2019, Malakie et al. used the 3-point trapezoidal rule for the complete step for the 

second sub-step and used two parameters to prescribe numerical dissipation of interest for Bathe method [25]. They 

proved that with proper constants, it is possible to obtain the best accuracy in the lowest modes integration and a 

quick suppression of spurious response in the higher modes of the system. In 2020, Li and Yu proposed a family of 

composite sub-step algorithms with controllable numerical dissipations. Their proposed method is a sub-step 

method, unconditionally stable, and its computational cost is the same as the Bathe algorithm [26].  In 2021, Nguyen 

et al. developed efficient and accurate numerical algorithms to solve a generalized Kirchhoff–Love plate model 

subject to three common physical boundary conditions [27]. More examples of the implicit methods can be found in 

[28, 29, 30, 31, 32] and some examples of the explicit methods are presented in [33, 34, 35]. 

 In this paper, a highly accurate and efficient implicit time integration method has been introduced which is 

based on a sinusoidal interpolation function of acceleration between two successive time steps. The method has been 

named based on the frequency (ζ) of the sinusoidal function. Firstly, the formulation of the method is introduced, 

and the corresponding equations and relations are derived step-by-step for SDOF systems, and then generalized for 

MDOF systems. In this paper, the linear form of the system is considered, and then is verified for nonlinear systems 

through an example. Next, the stability and accuracy of the method are theoretically and numerically investigated, 

and its spectral radius (as the stability criterion) is calculated and compared with those of other methods. Using a 

multi-objective optimization, the best value of ζ is obtained by minimizing the errors in accuracy. Moreover, 

numerical examples are solved using the ζ-method and the results are compared with the responses of other time 

integration methods. 

 

2   Formulation of ζ-method 

 

This method assumes a sinusoidal variation of the response acceleration between two successive time steps. In other 

words, the interpolation function between the two time steps is a sinusoidal function expressed as: 

 

         siniu u A         (1) 

 

where iu  is the response acceleration at time step i ,   is the circular frequency of the acceleration interpolation 

function, A  is the coefficient of the sine term, and   represents the time between two successive time steps. As a 

result, at it , 0   and at 1it  , Δt   (Δt  is the time step) (Figure 1).  If Δt  , then: 

 

       1 sin Δi iu u A t        (2) 

 

 

Rearranging Equation (2), results in 

 

       
 
1

sin Δ

i iu u
A

t

 
      (3) 
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Substituting Equation (3) into Equation (1) leads to: 

 

       
 

 
1

sin
sin Δ

i i
i

u u
u u

t
 



 
      (4) 

 

The integration of Equation (4) yields the velocity between the two time steps as: 

 

      
 

 
1

cos
sin Δ

i i
ii

u u
u u u

t
  

 

 
      (5) 

 

At time instant Δt  , the velocity can be obtained as follows: 

 

      
 

1

1 Δ
tan Δ

i i
ii i

u u
u u u t

t 






       (6) 

 

In order to derive the displacement equation between the two time steps, Equation (5) is integrated: 

 

      
 

 
2

1

2
sin

2 sin Δ

i i
ii i

u u
u u u u

t


  

 

 
      (7) 

 

At time instant Δt  , the displacement can be obtained as follows: 

 

      

2
1

1 2

Δ
Δ

2

i i
ii i i

t u u
u u u t u








       (8) 

 

Rearranging Equation (8) to find 
¨

1iu   results in: 

 

     

2 2¨
2 2 2

1 1

Δ
Δ 1

2
i ii i i

t
u u u tu u


   

 
       
 

  (9) 

 

By substituting Equation (9) into Equation (6) and rearranging the equations, we have: 

 

   

2 2

2 2 2

1 1

1 Δ
Δ Δ 1

tan Δ tan Δ 2

i

i ii i i i i

u t
u u u t u u tu u

t t


  

   
 
       

  
   
       

 

           

2 2 2 2 2

1

1

Δ Δ
Δ

tan Δ tan Δ tan Δ tan Δ 2 tan Δ tan Δ

i i ii i i
ii i

u u tuu t u u
u u u t

t t t t t t

   

           




         

(10) 

       
2

1 1
Δ Δ Δ

tan Δ tan Δ tan Δ 2 tan Δ
i ii i i i i

u u u u tu t u t u
t t t t

   

   
 
        
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Taking 
 tan Δt





 : 

 

     
2

1 1 1
2

ii i i i

t
u u u t u t u


   

            
 

   (11) 

 

By considering the implicit scheme, the equation of motion at each time step can be written as follows: 

 

      1 1 1 1i i i imu cu ku P          (12) 

 

If Equations (9) and (11) are employed for 
¨

1iu   and 1iu  , respectively, Equation (12) can be rewritten as: 

 
 

 
2

1 1 1

2 2
2 2 2

1

Δ
1 Δ Δ

2

Δ
Δ 1

2
ii i i i iii i i

t
m c u u tu t u ku P

t
u u tu u


  


  

           

     
                         

 
              

             (13) 
 

2 2 2

2 2 2

1 1

Δ Δ
Δ Δ Δ   

2 2
ii i i i

m t c t
m c k u m c u m t c t c u m c t u P

 
     

 
            

 
      
              

 

 

By introducing the following constants: 

 

 
2

1a m c k       
 

2

2a m c     
 

(14) 
2

3 Δ Δa m t c t c      
 

2 2 2

4

Δ Δ
Δ   

2 2

m t c t
a m c t

  
     
  

 

 

Equation (13) can be summarized as: 

 

      1 1 2 3 4 1ii i i ia u a u a u a u P        (15) 

 

Rearranging Equation (15),  1iu   is obtained as follows [1]: 

 

      1 2 3 4
1

1

ii i i
i

P a u a u a u
u

a




  
     (16) 
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 By obtaining 1iu  , 1iu   can be calculated using Equation (11). On the other hand, 1iu   can be calculated using 

either Equation (9) or the following equation which is a rearrangement of Equation (12): 

 

            (17) 

 

3   Stability analysis 

 

Approximations cause errors in numerical solutions while using time integration methods. The error at each time 

step has some effects on the calculations of the next time step. Sometimes, the error grows cumulatively, and the 

solution becomes unbounded. In this case, it is said that the method is unstable.  

 The stability of a numerical method is examined under undamped free vibration conditions. This is because 

undamped vibration conditions are more restrictive than damped vibration conditions from the stability point of 

view (i.e., damping helps limit the response). Moreover, if a numerical method is unstable in free vibration 

conditions, it tends to be unstable in forced vibration conditions as well. This is since an unstable complementary 

solution of the differential equation will quickly make the total solution unstable. 

 To investigate the stability of the  -method, it is a good practice to find a relationship between the 

displacement, velocity, and acceleration at time step 1i   and those at time step i . In most of the time integration 

methods, this can be performed by defining a matrix A  which relates the response parameters at the two successive 

time steps as follows [36]: 

 

1i iD D  A  

 

      
2

11 1 1, Δ , Δ

T

ii i iD u tu t u   

 
     

   (18) 

2, Δ , Δ

T

ii i iD u tu t u
 
     

 

 

where A  is the amplification matrix, Δt  is the time step, and 1iu  , 1iu  , and 1iu   are displacement, velocity, and 

acceleration at time step 1i  , respectively. iu , iu , and iu  are the corresponding values at time step i . By writing 

Equation (18) at time steps 1i  , i , 1i  , and 2i  , the following equation can be obtained: 

 

      1 1 2 1 32 0i i iu u u            (19) 

 

where 1  is half of the trace of matrix A , 2  is the sum of the principal minors of matrix A , and 3  is its 

determinant. The solution to Equation (19) has the following form: 

 

      
i

iu c       (20) 

 

where the  s are the eigenvalues of matrix A  and c  is a constant. Substituting Equation (20) into (19), we have: 

 

      
3 2

1 2 32 0             (21) 

 

which has 3 roots. Thus, the general solution can be written as: 
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3

1

i

i n n
n

u c 


       (22) 

 

 To check the stability of the method, the undamped free vibration of the system is taken as the criterion [36]. 

Thus, the equation of motion can be rewritten as: 

 

      
2

1 1 0i iu u        (23) 

 

where /k m   is the undamped natural frequency of the system. Equation (23) can be written in the form of 

Equation (18) by employing Equations (6) and (8) for displacement and velocity, respectively. Thus, matrix A  is 

obtained for the  -method as: 

 

 

2 2
2 2

2

2 2 2 2
2 2 2 2

2 2

2 2 2

2 2 2 2 2 2

Δ 2

2Δ

1 Δ Δ 2 Δ
              

tan Δ tan Δ 2Δ tan Δ

Δ 2
Δ Δ

2

t

t

t t t

t t t t

t
t t


 

      
   

    

 
   

 
 
 
 
 
 

 
     

   
 
 
    
  

A   (24) 

 

 

Thus, the determinant, half of the trace, and the sum of the principal minors of matrix A  are given by: 

 

2 2 2 2

1 2 2

1 Δ Δ
1

2 tan Δ 4

t t

t

   


  

 
    
   

 

2 2 2 2

2 2 2

1 Δ Δ
1

tan Δ 2

t t

t

   


  

 
    
   

 (25) 

 

  3 0Det  A  

 

With 3 0  , Equation (21) can be expressed as: 

 

      
2

1 22 0           (26) 

 

The roots of the preceding equation are: 

 

      
2

1, 2 1 1 2           (27) 

 

According to Equation (22), to have an oscillatory motion, 
2

1 2   must be negative [36]: 

 

      
2

1 2 0         (28) 

 

which gives one stability condition. On the other hand, Equation (27) can be presented as: 
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       1/2

1, 2 2 cos sin     i     (29) 

 

where 1 i  and: 

 

      

2

2 1

1

tan
 





       (30) 

 

Substituting Equation (29) into (22), the following equation is obtained for the response: 

 

       /2

2 1 2cos sini

iu c i c i        (31) 

 

where 1c  and 2c  are determined from the initial conditions and i  stands for the numbers of the time steps. By 

increasing i , 
/2

2

i  approaches infinity if 2 1  . As a result, for the amplitude to remain limited, the stability 

condition must be 2 1  . To summarize, the condition for a stable oscillation is: 

 

      
2

1 2 1         (32) 

 

 To satisfy condition (28), by considering the values of 1  and 2  obtained from Equation (25), the following 

inequality must be valid: 

 

   

 

2 2 2 2 2 2 2 2
2 2

2 2
2 2

Δ Δ Δ
0

4 tan Δ 4tan Δ 16

t t t

t t

      
 

  

 
      
   

  (33) 

 

Firstly, the following conditions must be satisfied: 

 

   

(34)   

 2 1
Δ  ,  1, 2, 3, 

2

n
t n





   

By factoring the 
2  term in the bracket and dividing Equation (33) by 

 

2 2 2
2

2
2 2

Δt 


 
 , we will have: 

 

    

2 2 2

2 2

1 Δ Δ
1 0

4 tan Δ 4tan Δ 16

t t

t t

  

  
         (35) 

 

Let /x    and Δ /y t T  ( 2 /T   ). Then, Equation (35) can be rewritten as: 

 

    
 

2 2 2

2

2

21 2
,  1 0

4 tan 2 4 tan 2 16

x yxy
F x y x

xy xy



 
        (36) 
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 The solution to the preceding inequality might be obtained. The value of sign [  , F x y ] is calculated for 

several values of x  and y  as plotted in Figure 2. To provide a better view, tan xy  is expanded using the first four 

terms of the Taylor expansion as: 

 

     

3 3 5 5 7 72 17
tan

3 15 315

x y x y x y
xy xy        (37) 

 

 The same process is performed to obtain the plot of sign [  , F x y ] using the Taylor approximation, as shown 

in Figure 3. It can be observed that there is no sign of discontinuities in this Figure in contrast to Figure 2. The 

discontinuities in Figure 2 are due to ignoring condition (34) in the selection of x  and y . In addition to condition 

(34), based on Figure 3, an approximate stability condition for y  and x  can be stated as: 

 

 
Δ

0.6
t

y
T

   

       (38) 

 5x



   

 

To satisfy 2 1   in condition (32), Equation (25) is rewritten as: 

 

     

2

2 2

Δ Δ
1 cot Δ 1

2

t t
t

  


 

 
    

   
    (39) 

 

Since   is positive, by rearranging the inequality, the condition is reduced to: 

 

      
Δ

cot Δ
2

t
t


         (40) 

 

 Thus, as the stability criterion, the selected Δt  must satisfy condition (40). Stability conditions are essential 

to have an oscillatory motion and ensure that the motion stays bounded. However, the accuracy of the response 

might not be guaranteed. 

 
 

 

4   Accuracy analysis 

 

Accuracy is an important parameter in selecting a time integration method. Under the critical free vibration 

conditions, accuracy can be investigated from two viewpoints: errors in amplitude and period. In other words, the 

amplitude or period obtained by the time integration method might be different from the actual values. To 

investigate these errors, Equation (20) can be rewritten as follows [36]: 

 

 

       1 1 2 2λ
i i

iu c c      (41) 

 

1  and 2  are in the form of m n i  and m n i  and have been calculated in Equation (27). Thus, Equation (41) 

can be written as: 
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       ' '

1 2cos sini p i iu c c         (42) 

 

where 
2 2

p m n   , 
1tan /n m  , /Δt   , Δi i t  , and i  indicates the numbers of the time 

steps. To obtain the exact solution and to observe no amplitude change with i , 
p  must be equal to unity. Since 

this is not practical in time integration methods, an amplitude decay and a period elongation are defined as follows 

[36]: 

 

ΔT T t
PE

T

 






 
    (43) 

2 /1 pAD         (44) 

 

where 2 / ' T    and   is the natural circular frequency of the system. The spectra of the period elongation 

and amplitude decay of the  -method for different values of /   and Δ /t T  are plotted in Figures 4 and 5, 

respectively. In these figures, the horizontal and vertical axes represent /   and Δ /t T  ratios, respectively. The 

colors in the images show the intensity of the AD or PE parameters expressed in the color bar. It can be concluded 

that the accuracy of the  -method is unacceptable for Δ / 0.3t T  . However, this is not a limitation while dealing 

with a time history analysis since small Δ /t T s are usually used for modeling the time history in typical problems. 

In addition, there is a wide range of   which can be chosen for a rather accurate result and the best value of   

should be found among the possible values. 

 

5   The best value of ζ 

 

Figures 6 and 7 show the contours of AD < 0.01 and PE < 0.01, respectively, giving a general view about the form 

of the relationship between /   and Δ /t T  for the points with a good accuracy. It seems that a homographic 

relationship exists between /   and Δ /t T  as follows:  

 

       
Δt D

T 



 
      
   

  
 

     (45) 

 
where D is a constant value. This hypothesis was checked for several contours of both Figures 6 and 7 using curve 

fitting techniques. For instance, Figure 8 was obtained for the first contour of AD < 0.01 with curve-fitting 

parameters presented in Table 1. The same process was performed for the other contours revealing the fact that 

Equation (45) fits well to the data. Rearranging Equation (45) using 2 /T  , the following relation was 

obtained for ζ: 

 

       
Δ

C

t
       (46) 

 

where C is a constant value. 

 

 To find the best C value, multi-objective particle swarm optimization (MOPSO) [37] was used to minimize the 

errors of Equations (43) and (44) with C as the design variable. The objective functions were defined as the 

summation of AD or PE for all Δ /t T s in the range of 0 to 0.2 with a step of 0.01 to consider all Δ /t T s for the 

minimization problem. From the resulting Pareto front, C = 62.8 provided the best solution. The optimization 
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settings and the best solution are presented in Table 2. Having the best value of ζ, a generalized algorithm has been 

presented for the ζ-method in Table 3 which can also be used for MDOF systems. 

  

 

6   Stability, accuracy, and consistency  

 

6.1 Spectral radius, amplitude decay, and period elongation 

 

As an acceptable representation of the stability of a time integration method, spectral radius is defined as 

 1 2 3, ,s Max    . Considering the general solution expressed as Equation (22), if the absolute value of 

any i  becomes larger than unity, the resulting response starts diverging and the solution becomes unstable as the 

step-by-step numerical solution progresses. Since 3  is zero for the ζ-method,  1 2  ,s Max    and i s can 

be calculated using Equation (27). 

 It is worth mentioning that for the value of C obtained from optimization, the value of cot Δt  is equal to 

Δ / 2t  with a negligible error. Accordingly, condition (40) is always satisfied. On the other hand, when 

cot Δ Δ / 2t t  , the value of 2  in Equation (25) will be equal to unity. Moreover, the value of 1  is 

reduced to: 

 

      

 

2 2 2

1 2 2

Δ
1

2

t 


 
 


      (47) 

 

This value of 1  is always less than unity based on condition (38). In addition, since 2 1  , inequality (28) 

always holds. It should be noted that condition (38) always holds for 62.8 /Δt   by taking Equation (46) into 

account. 

 To evaluate the  -method for 62.8 /Δt  , the spectral radii of a few time integration methods have been 

plotted in Figure 9. It can be concluded that the  -method with 62.8 /Δt   becomes unstable at a Δ /t T  

greater than that at which the central difference method becomes unstable and at a Δ /t T  less than that at which 

the Newmark linear acceleration method becomes unstable. The spectral radius of the Newmark average 

acceleration method is equal to unity and the Wilson-  method is unconditionally stable for 1.4   . The  -

method becomes unstable for Δ / 0.44t T   . In this Figure, the constants of the  -Bathe method were 0   

and 
2 2 2

1










 



 as the default values introduced in [24]. 

 

 

 The amplitude decay and period elongation of the  -method are plotted in Figures 10 and 11, respectively. 

The results show that this method has no amplitude decay. The period elongation of the  -method is very close to 

that of the central difference method. 

 

 

6.2 Local truncation error and consistency 

 

In addition to stability, consistency is a requirement for any time integration method to be convergent. The order of 

consistency can be determined by calculating the local truncation error. The local truncation error for displacement 

is defined as follows: 
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 Δ ΔΔ
tu t t te u t t u         (48) 

 

where  Δu t t  is the exact displacement value at time instant Δt t , and Δt tu   is the displacement value 

approximated by the time integration method. In general, the time integration method has a consistency order of p  

if the governing term of the truncation error is of order of 1p  . An order of one or greater is required for a method 

to be consistent [16]. Firstly, the values of displacement, velocity, and acceleration responses at time step Δt t  

are calculated using Taylor expansion as follows:   

 

             32 3 4

1

1 1
Δ Δ Δ Δ Δ

2 6
u t t u t tu t t u t t u t R t         (49) 

               3 42 3 4

2

1 1
Δ Δ Δ Δ Δ

2 6
u t t u t t u t t u t t u t R t         (50) 

                 3 4 52 3 4

3

1 1
Δ Δ Δ Δ Δ

2 6
u t t u t tu t t u t t u t R t        (51) 

 

where iR s are the residuals and 
   n

u t  denotes the n th derivative of u  with respect to t . Moreover, the 

displacement approximated by  -method in Equation (8) is used as Δt tu   for the time step Δt t : 

  

     
   2

Δ 2

ΔΔ
t Δ

2
t t

u t t u tt
u u t u t u t




 
        (52) 

 

Then, Equation (48) is expanded using Equation (49) for  Δu t t , Δt tu   is replaced by Equation (52), and   is 

replaced by /C t  as follows: 

 

                 
   

 Δ

2

32 3 4

1 2

Δ1 1 Δ
Δ Δ Δ Δ Δ t

2 6 2 / Δ   
t tu

u t t u tt
e u t tu t t u t t u t R t u t tu u t

C t


 
        

 
 
 
 
  
 

    (53) 

 

In this equation,  Δu t t  is substituted by its Taylor expansion of Equation (51). After rearranging, the following 

equation is obtained: 

 

               
2

3 4 53 4 4 5 4

Δ 2 2 2 2

1 1 1 1 1 Δ
t Δ Δ Δ Δ Δ

6 2 6 6tu t

t
e u t u t t R t u t t R t

C C C C


 
        
 

 (54) 

 

The leading term in the displacement local truncation error of  -method is: 

 

   3 3

3 2

1 1
Δ

6
e u t t

C

 
    
 

     (55) 

 

 In general, it can be stated that the leading term of the displacement local truncation error of the  -method is a 

function of 
3Δt .Taking 62.8C  , the preceding equation approximately reduces to: 
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   3

3

3

t
Δ

6

u
e t       (56) 

 

which is the leading term of the displacement local truncation error of the  -method with 62.8 /Δt  . 

 Here, the consistency of the velocity solution is also investigated. Since the equation of motion is a second 

order ordinary differential equation, the single-step time integration method must be also consistent in velocity [16]. 

The same as displacement, the local truncation error of velocity is defined as follows: 

 

 
Δ ΔΔ

t tu t te u t t u
         (57) 

 

where  Δu t t  is the exact velocity value at time instant Δt t  and Δt tu   is the velocity value approximated by 

the time integration method. The velocity approximated by  -method in Equation (6) is used as Δt tu   at the time 

step Δt t : 

 

   
   

 Δ

Δ
t Δ

tan Δ
t t

u t t u t
u u t u t

t 


 
       (58) 

 

 Equation (57) is expanded using Equation (50) for  Δu t t , Δt tu   is replaced by Equation (58), and   is 

replaced by /C t  as follows: 

 

                 
   

   Δ

3 42 3 4

2

Δ1 1
Δ Δ Δ Δ t Δ

2 6 / Δ tan   t tu

u t t u t
e u t t u t t u t t u t R t u t u t

C t C

 
       

 
 
 
 
  
 

(59) 

 

 In this equation,  Δu t t  is substituted by its Taylor expansion of Equation (51). After rearranging and 

taking  tanC C  , the following equation is obtained: 

 

               
Δ

3 4 52 3 4 4 4

2 3

1 1 1 1 1 1
Δ Δ Δ Δ Δ Δ

2 2 6 6t tue u t t u t t u t t R t tR t
   

   
               
   

 

 (60) 

 

The leading term in the velocity local truncation error of  -method is: 

 

   3 2

2

1 1
Δ

2
e u t t



 
    
 

     (61) 

 

 Finally, it can be stated that the leading term of the velocity local truncation error of the  -method is a 

function of 
2Δt . 

 

 

7   Illustrative examples 
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In this section, some numerical examples are presented and the accuracy of the  -method is compared with other 

time integration methods. For this purpose, some cumulative absolute relative errors are defined as follows: 

 

     
0

t

u preciseError t u u d     

     
0

t

v preciseError t u u d        (62)  

     
0

t
preciseaError t u u d     

 

where  u  ,  u  , and  u   are the displacement, velocity, and acceleration responses, respectively, and  

 preciseu  ,  preciseu  , and  preciseu   are the corresponding precise responses. The integrals were calculated 

numerically using the trapezoidal method [36]. These errors are used to compare the accuracy of different methods 

with respect to the precise solutions.  

 

7.1 Undamped free vibration 

 

The free vibration response of an undamped SDOF system was calculated using the  -method and was compared 

with that of the Newmark linear acceleration method and the  -Bathe method ( 0   and 
2 2 2

1










 



) 

in Figure 12a for the first three cycles using Δ / 0.1t T  . 

 The time variations of the relative displacement cumulative error of Equation (62) ( uError ) for the three 

methods are illustrated in Figure 12b. In this equation,  preciseu   is taken as the exact theoretical solution for the 

undamped free vibration. The results show that in terms of accuracy,  -Bathe method has the least error while 

Newmark linear acceleration and  -method are almost the same (at different cycles behave differently). In 

addition, it is obvious that the  -method is an implicit method with period shrinkage, while the Newmark linear 

acceleration and the  -Bathe methods cause period elongation. 

 
 

7.2 Response of a short-period system subjected to El Centro record 

 

To evaluate the performance of the  -method in earthquake engineering, the dynamic response of a damped SDOF 

system with a natural period of 0.2 sec  and damping ratio of 0.05   was investigated. The unscaled record of 

the El Centro ground motion during Imperial Valley earthquake of 1940 was chosen as the input acceleration with a 

time step of    0.02 t sec  , resulting in a Δ / 0.1t T  . Using 
29806  /g mm sec , the dynamic response was 

calculated using the  -method. 

 To find a precise solution, each time step of the record was divided into ten sub-steps and the corresponding 

amplitudes were obtained using linear interpolation (Δ 0.002 t sec  and Δ / 0.01t T  ) which resulted in almost 

the same responses for all methods. 

 The process was repeated for the original record (Δ 0.02 t sec ) for  -method, Newmark linear 

acceleration method, and  -Bathe method ( 0   and 
2 2 2

1










 



) and the responses were 
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compared with the precise solution. This comparison for the displacement, velocity and acceleration responses has 

been illustrated in Figure 13 revealing the accuracy of the method. 

 Since the  -Bathe method is a sub-step method, it obviously represents the highest accuracy. On the other 

hand, in terms of execution time, the  -Bathe method is significantly more time-consuming than the  -method. 

To provide a fair comparison basis, an interpolated version of the  -method was used using a linear interpolation 

of the input load for Δ Δ / 2interpolationt t . By this, the execution time of both methods got closer and using the 

linear interpolation, two sub-steps were generated at each time step of the  -method (equal to that of  -Bathe). 

The response of the interpolated version of the  -method is denoted as “ -method (interpolated)” in Figure 13. 

 The plot of the cumulative relative error for displacement of Equation (62) with respect to time is illustrated in 

Figure 14a. Taking T  as the duration of the input excitation, the total errors are defined as  uError T , 

 vError T , and  aError T . The total errors and the execution times of  -method (interpolated),  -method, 

 -Bathe method ( 0   and 
2 2 2

1










 



), and Newmark linear acceleration method are given in 

Table 4. Moreover, the mean-value of execution time for 1,000 executions is reported for each method in Table 4. It 

is observed that the total displacement error of the interpolated  -method is one-third that of  -Bathe with an 

equal execution time. 

 To assess the effect of the natural period of vibration on the accuracy, the total displacement error of the 

methods was calculated for different periods and normalized to the cumulative absolute value of the precise 

displacement response (i.e.,  
0

T

preciseu d  ) with the same period. For this purpose, the displacement response 

under the El Centro ground motion with Δ 0.02 t sec  was obtained for several natural periods using different 

time integration methods. Figure 14b represents this comparison revealing the fact that the interpolated  -method 

has the lowest error for different natural periods and consequently different Δ /t T  values. Moreover, the Newmark 

linear acceleration method and the  -method are almost similar in terms of error. 

 

7.3 A long-period system under a harmonic loading 

 

Figure 15 presents the displacement, velocity, and acceleration responses of an undamped SDOF system subjected 

to a harmonic force. The force function was selected as    0sin ΩP t p t  with Ω  3  /rad sec  and 

0 1000  /p N m . The initial displacement and velocity were taken as zero and the system stiffness ( k ) and mass 

( m ) were 622.22  /N m  and 96 kg , respectively, resulting in a period of 2.468 sec . The exact solution and the 

numerical response of the system using the interpolated version of  -method (Δ Δ / 2)interpolationt t ,   -method,  

 -Bathe method, and Newmark linear acceleration method were compared when Δ 0.2 t sec  . It is observed 

that the  -method showed more accurate results than the Newmark linear acceleration and the  -Bathe method 

in the case of a long-period system. 

 The time variation of  uError t  is plotted in Figure 16 and the total errors and the mean-value of the 

execution times of the time-stepping process are given in Table 5. It is observed that  -method is more accurate 

than both Newmark linear acceleration method and  -Bathe method. For the displacement response, interpolated 

 -method is five times more accurate than the  -Bathe method with a nearly equal execution time for the long 

period system under a harmonic loading. 

 

7.4 A Nonlinear single-degree-of-freedom system 
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The numerical responses of a nonlinear SDOF system subjected to a harmonic load were compared for different 

methods as shown in Figure 17a. The SDOF system had a mass of 0.2533 m kg , a stiffness of 10  /k N m  (a 

period of 1 sec ), and a damping ratio of 0.05  . An elasto-plastic behavior was considered for the system with 

a yielding force of 10 N . A harmonic load equal to    10sin 2 / 0.6P t t  was applied to the system from 

time instant 0 to 0.5 sec  with no initial conditions. The response for 10 sec  was calculated and to solve the 

nonlinear response, Newton-Raphson iteration was also used [1, 36]. The time step for the numerical solution was 

taken equal to Δ 0.1 t sec .To find the precise response as a reference for comparison, the response was once 

calculated using a time step equal to Δ 0.01 t sec  using Newmark linear acceleration method. The numerical 

response of the system using different methods were compared with the precise response. 

 The time variation of  uError t  of Equation (62) is plotted in Figure 17b and the total errors are given in 

Table 6. The results showed that  -method was more accurate than the Newmark linear and average acceleration 

methods for the displacement response, while it was almost the same in terms of velocity and acceleration errors. 

 

 

 

 

7.5 A multi-degree-of-freedom system 

 

The shear building of Figure 18, which is taken from Section 12.1 of reference [1] (with modifications), is used to 

investigate the accuracy of the  -method as a MDOF system. The mass ( M ) and stiffness ( K ) matrices and the 

input dynamic load are defined in Figure 18. For this system, 2.5880 m kg , 100  /k N m , 

 193.2sin 2gu t , and the loading function  tP  was applied from time instant 0  to 1 sec  with no initial 

conditions. 

 

 A constant damping ratio of  0.05   was considered for all modes and the damping matrix was calculated 

accordingly. The modal periods were calculated as  3.5512;1  .2166; 0.7718; 0.6008; 0.5267nT   sec, 

resulting in  Δ / 0.0282; 0.0822; 0.1296; 0.1665; 0.1898nt T  . 

 The dynamic responses for all DOFs were calculated for 10 sec , and the time step for the numerical solution 

was taken equal to Δ 0.1 t sec . To find the precise responses, the solution was once calculated using a time step 

equal to Δ 0.001 t sec  using Newmark linear acceleration method. The numerical solutions for  -method, 

Newmark linear acceleration, and Newmark average acceleration methods were compared with the precise 

responses as represented in Figure 19. 

 The cumulative displacement error of Equation (62) is illustrated in Figure 20, and the total errors are given in 

Table 7. The results showed that for this example, the  -method was more accurate than the Newmark linear and 

average acceleration methods for the displacement response. In addition, for the velocity and acceleration responses, 

 -method is more accurate than linear acceleration method while it is almost the same as the average acceleration 

method. It is worth mentioning that for the higher modes with more critical Δ / nt T s, the accuracy of the  -method 

was significant. 
 

 

8   Conclusions 

 

An implicit numerical technique, named  -method, was introduced for solving the equation of motion of dynamic 

systems. The method assumes a sinusoidal distribution for the response acceleration between two successive time 

steps. In the formulation of the method, a parameter    was defined which prescribes the frequency of the 
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interpolation function, the amplitude decay, the period elongation, and indeed, the accuracy of the method. The best 

value for parameter    was obtained by minimizing the amplitude decay and the period elongation using multi-

objective optimization technique. According to the analysis results, 62.8 /Δt   offers the best accuracy.  

 Moreover, accuracy, stability, spectral radius, consistency, and performance of the method were theoretically 

and numerically discussed. Accordingly, the  -method is a conditionally stable time integration method with slight 

period shrinkage. This method was stable for Δ / 0.3t T   and could be confidently and efficiently used for 

Δ / 0.1t T   to obtain highly accurate responses.  

 In addition, an interpolated version of the  -method was also introduced which showed significant accuracy 

in comparison with similar methods. A few problems were also solved using both versions of the method and the 

results were compared with those of well-known and recently developed technics. The  -method had superior 

results and performances for the long-period system under harmonic loading, the nonlinear structure, and the MDOF 

system examined in this paper. 

 In this work, the focus was centered on the development of the formulations to form the basis of the  -method 

considering the implicit scheme. Further studies on the  -method with more sinusoidal terms as the acceleration 

interpolation function, and mathematical derivation of the interpolated version of the  -method could be very 

useful. Moreover, since an effective time integration method should be able to deal with large-scale dynamic 

systems involving many degrees of freedom, for future studies it is suggested to investigate the accuracy and 

performance of the  -method for large-scale problems [38, 39, 40]. 
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Figure 1 Sinusoidal interpolation of acceleration between two successive time steps with respect to τ. 

 

 
Figure 2 Sign of F(x, y) for the sample space. 

 

 
 

Figure 3 Sign of F(x, y) using Taylor expansion approximation for the sample space. 

 

 
 

Figure 4 Period elongation of the ζ-method. 
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Figure 5 Amplitude decay of the ζ-method. 

 

 

 
 

Figure 6 Contours corresponding to the amplitude decays of less than 0.01. 

 

 
 

Figure 7 Contours corresponding to the period elongations of less than 0.01. 
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Figure 8 Curve fitted to the data of the first contour. 

 

 

 

 
 

Figure 9 Comparing the spectral radius of the ζ-method for ζ = 62.8/Δt with those of the other time integration methods. 

 

 
 

Figure 10 Comparing the amplitude decay of the ζ-method for ζ = 62.8/Δt with those of the other time integration methods. 
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Figure 11 Comparing the period elongation of the ζ-method for ζ = 62.8/Δt with those of the other time integration methods. 

 

 
Figure 12 a) The first three cycles of free vibration responses; b) the cumulative displacement error of an undamped SDOF 

system with Δt/T = 0.1 using the Newmark linear acceleration, ρ∞-Bathe, and the ζ-method. 
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Figure 13 Comparing the responses of ζ-method (interpolated), ζ-method, Newmark linear acceleration method, and ρ∞-Bathe 

method (Δt = 0.02 sec) with the precise response (Δt = 0.002 sec) under El Centro record: (a) displacement response; (b) velocity 

response; (c) acceleration reponse; (d) close-up of displacement response. 
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Figure 14 a) the cumulative absolute relative displacement error of several methods for a SDOF system with T = 0.2 sec; b) the 

normalized total displacement error of several methods for systems with different natural periods subjected to El Centro record. 
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Figure 15 The response of an undamped SDOF system with T = 2.468 sec and Δt = 0.2 sec subjected to P = 1000 sin(3t):  (a) 

displacement response; (b) velocity response; (c) acceleration reponse. 

 

 
 

Figure 16 The cumulative relative displacement error of several methods of an undamped SDOF system subjected to the 

harmonic force of P = 1000 sin(3t). 
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Figure 17 a) the nonlinear displacement response; b) the cumulative relative displacement error of different time integration 

methods of the nonlinear SDOF system with T = 1 sec and Δt = 0.1 sec subjected to P(t) = 10 sin (2πt)/0.6. 
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Figure 18 Shear building of Example 7.5 with mass and stiffness matrices, and the input dynamic load. 

 

 
Figure 19 The numerical displacement responses of: a) first; b) second; c) third; d) fourth; and e) fifth DOFs of the MDOF 

system with Δt = 0.1 sec subjected to harmonic load. 
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Figure 20 The cumulative relative displacement error of different time integration methods of the MDOF system subjected to the 

harmonic load. 
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Tables 

 
Table 1 Curve-fitting parameters of AD < 0.01. 

 

SSE R2 DFE R2
adj RMSE 

0.0166 0.9998 3279 0.9998 0.0023 

 

 
Table 2 Settings and results of the multi-objective particle swarm optimization. 

 

Population size Number of Iterations (Generations) Repository size Best solution 

100 10000 100 62.8000167 
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Table 3 Algorithm of the ζ-method. 

1. Initial calculations* 

 

 1.1  Select Δt  

     1.2  Take 62.8 /Δt   

 1.3  
 tan Δt





  

 1.4       0 0 0 01 2
. . .

T

N
u u u    

u  

         0 0 0 01 2
. . .

T

N
u u u    

u  

    1
0 0 0 0

  u M P Cu Ku  

 1.5  
2

1        
a M C K  

 1.6  
2

2      
a M C  

 1.7  
2

3 Δ Δt t      
a M C C  

 1.8  

2 2 2

4

Δ Δ
Δ   

2 2

t t
t

  
     
  

a M M C C  

 
2. Calculations for other time steps 

 2.1  
1

1 1 1 2 3 4 ii i i i



 

 
      
 

u a P a u a u a u  

 2.2   
2

1 1 1
2

ii i i i

t
t t


   

            
 

u u u u u  

 2.3  

2 2
2 2 2

1 1

Δ
Δ 1

2
i ii i i

t
t


   

 
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 

u u u u u  

 
3. Repeat 2.1 to 2.3 for the next time steps. 
 
* M, C, and K are mass, damping, and stiffness matrices, respectively. 
   Pi is the dynamic external load at ith step. 
  N is the number of degree-of-freedom. 
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Table 4 The comparison of the total absolute relative error and the execution time of different methods for a SDOF system with 

T = 0.2 sec subjected to El Centro ground motion. 

 
Method Total displacement error 

(mm.sec) 

Total velocity error 

(mm) 

Total acceleration error 

(mm/sec) 

Execution time 

(milliseconds) 

ζ-method 

(interpolated) 

2.09 62.73 2036.92 0.0690 

ζ-method 8.56 251.79 8335.76 0.0190 

Newmark linear 

acceleration 

7.33 232.29 7267.04 0.0262 

ρ∞-Bathe 6.30 194.24 6259.01 0.0771 

 

 
Table 5 Comparison of the total error and the execution time of different methods. 

 
Method Total displacement error 

(m.sec) 

Total velocity error (m) Total acceleration error 

(m/sec) 

Execution time 

(milliseconds) 

ζ-method 

(interpolated) 

1.663 3.770 10.780 0.0034 

ζ-method 5.370 13.441 34.835 0.0018 

Newmark linear 

acceleration 

5.752 16.165 37.038 0.0018 

ρ∞-Bathe 6.304 24.215 56.070 0.0040 

 
Table 6 Comparison of the total error of different methods. 

 

Method 
Total displacement error 

(m.sec) 
Total velocity error (m) 

Total acceleration error 

(m/sec) 

ζ-method 0.72743 40.339 90.435 

Newmark linear 

acceleration 
1.958 37.842 89.13 

Newmark average 

acceleration 
3.2004 36.674 88.418 

 

 
Table 7 Comparison of the total error of different methods. 

 

Method 
Total Erroru 

(m.sec) 

Total Errorv 

(m) 

Total Errora 

(m/sec) 

Total Erroru 

(m.sec) 

Total Errorv 

(m) 

Total Errora 

(m/sec) 

DOF u1 u2 

ζ-method 2.828065 15.97523 116.6835 3.72312 16.7361 93.0644 

Newmark linear acceleration 5.139863 28.7022 193.7407 6.44375 31.62849 168.6993 

Newmark average acceleration 2.899619 15.45146 108.7588 3.77382 16.8867 88.6841 

DOF u3 u4 

ζ-method 3.748271 15.27157 104.7166 4.11576 10.9837 69.64 

Newmark linear acceleration 5.741478 25.24164 167.8254 6.21416 17.97887 116.8667 

Newmark average acceleration 4.07242 14.697 93.1223 5.06203 12.3865 67.4613 

DOF u5 
   

ζ-method 5.007442 17.66328 109.149 
   

Newmark linear acceleration 8.186316 33.53575 188.2962 
   

Newmark average acceleration 6.079406 18.96263 101.2013 
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