1. Sahu, A.K., Chhabra, R., and Eswaran, V. "Two-dimensional laminar flow of a power-law fluid across a confined square cylinder", J. Non-Newt. Fluid Mech., 165(13-14), pp. 752-763 (2010). https://doi.org/10.1016/j.jnnfm.2010.03.011.
2. Kumar, A., Tripathi, R., Singh, R., et al. "Simultaneous effects of nonlinear thermal radiation and joule heating on the flow of williamson nanofluid with entropy generation", Phys. A: Stat. Mech., 551, 123972 (2020). https://doi.org/10.1016/j.physa.2019.123972.
3. Hussain, S.M. and Jamshed, W. "A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method", Int. Commun. Heat Mass Transf., 129, 105671 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105671.
4. Kumar, A., Singh, R., and Sheremet, M.A. "Analysis and modeling of magnetic dipole for the radiative flow of non-newtonian nanomaterial with arrhenius activation energy", Math. Methods Appl. Sci, (2021). https://doi.org/10.1002/mma.7124.
5. Wang, S. and Yu, B. "Analysis of seepage for power-law fluids in the fractal-like tree network", Tranp. Porous Media, 87(1), pp. 191-206 (2011). https://doi.org/10.1007/s11242-010-9675-8.
6. Nitin, S. and Chhabra, R. " Sedimentation of a circular disk in power law fluids", J. Colloid Interface Sci., 295(2), pp. 520-527 (2006).https://doi.org/10.1016/j.jcis.2005.08.024.
7. Bharti, R.P., Sivakumar, P., and Chhabra, R. "Forced convection heat transfer from an elliptical cylinder to power-law fluids", Int. J. Heat Mass Transf., 51(7-8), pp. 1838-1853 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.032.
8. Ming, C., Zheng, L., and Zhang, X. "Steady flow and heat transfer of the power-law fluid over a rotating disk", Int. Comm. Heat Mass Transf., 38(3), pp. 280-284 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2010.11.013.
9. Li, B., Zheng, L., and Zhang, X. "Comparison between thermal conductivity models on heat transfer in powerlaw non-newtonian fluids", J. Heat Transf., 134(4), 041702 (2012). https://doi.org/10.1115/1.4004020.
10. Lin, Y. and Jiang, Y. "Effects of brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation", Int. J. Heat Mass Transf., 123, pp. 569-582 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.103.
11. Abdul Gaffar, S., Ramachandra Prasad, V., Ramesh Reddy, P., et al. "Radiative flow of third grade non-newtonian fluid from a horizontal circular cylinder", Nonlinear Eng., 8(1), pp. 673-687 (2019). https://doi.org/10.1515/nleng-2018-0078.
12. Sadiq, M.A. and Hayat, T. "Entropy optimized flow of reiner-rivlin nanofluid with chemical reaction subject to stretchable rotating disk", Alexandria Eng. J., 61(5), pp. 3501-3510 (2021). https://doi.org/10.1016/j.aej.2021.08.069.
13. Napolitano, L. "Surface and buoyancy driven free convection", Acta Astronautica, 9(4), pp. 199-215 (1982). https://doi.org/10.1016/0094-5765(82)90023-6.
14. Boeck, T. and Thess, A. "Power-law scaling in benard-marangoni convection at large prandtl numbers", Phy. Review E., 64(2), 027303 (2001).https://doi.org/10.1103/PhysRevE.64.027303.
15. Lin, Y. and Zheng, L. "Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk", AIP Advances, 5(10), 107225 (2015). https://doi.org/10.1063/1.4934932.
16. Gupta, A. and Surya, D. "Convection in a thin liquid layer with mixed thermal boundary conditions: B'enard-marangoni convection", Proc. Natl. Acad. Sci. India - Phys. Sci., 88(1), pp. 73-79 (2018). https://doi.org/10.1007/s40010-016-0339-0.
17. Kumari, A. and Tripathi, R. "Irreversibility analysis of thermo-solutal Marangoni convection in Maxwell power-law- fluid flow", Math. Methods Appl. Sci., 46(8), pp. 9391-9414 (2023).https://doi.org/10.1002/mma.9065.
18. Jin, K., Kumar, P. and Vanka, S. "Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field", Phys. Fluids., 28(9), 093301 (2016). https://doi.org/10.1063/1.4961561.
19. Wilson, S. "The effect of a uniform magnetic field on the onset of steady marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary", Phys. Fluids., 6(11), pp. 3591-3600 (1994). https://doi.org/10.1007/BF00127480.
20. Magyari, E. and Chamkha, A. "Exact analytical results for the thermosolutal mhd marangoni boundary layers", Int. J. Therm. Sci., 47(7), pp. 848-857 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.07.004.
21. Abel, M.S., Datti, P.S., and Mahesha, N. "Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source", Int. J. Heat Mass Transf., 52(11-12), pp. 2902-2913 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.042.
22. Jiao, C., Zheng, L., and Ma, L. "MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient", AIP Advances, 5(8), 087160 (2015). https://doi.org/10.1063/1.4929525.
23. Jawad, M., Saeed, A., Gul, T., et al. et al. "Unsteady thermal maxwell power law nano fluid flow subject to forced thermal marangoni convection", Sci. Rep., 11(1), pp. 1-14 (2021). https://doi.org/10.1038/s41598-021-86865-0.
24. Nandi, S. and Kumbhakar, B. "Viscous dissipation and chemical reaction effects on tangent hyperbolic nano fluid flow past a stretching wedge with convective heating and naviers slip conditions", Iran. J. Sci. Technol. - Trans. Mech. Eng., 46(2), pp. 379-397 (2021). https://doi.org/10.1007/s40997-021-00437-1.
25. Tripathi, R. "Marangoni convection in the transient flow of hybrid nanoliquid thin film over a radially stretching disk", P. I. Mech. Eng. E.J. Pro., 235(4) pp. 800-811 (2021). https://doi.org/10.1177/09544089211008052.
26. Hussain, S.M. "Dynamics of radiative williamson hybrid nano fluid with entropy generation: significance in solar aircraft", Sci. Rep., 12(1), pp. 1-23 (2022a). https://doi.org/10.1038/s41598-022-13086-4.
27. Abbas, N., Shatanawi, W., and Shatnawi, T.AM. "Transportation of nanomaterial Maxwell fluid flow with thermal slip under the effect of Soret-Dufour and second-order slips: nonlinear stretching", Sci. Reports, 13(1), 2182 (2023). https://doi.org/10.1038/s41598- 022-25600-9.
28. Abe, Y. "Self-rewetting fluids: Beneficial aqueous solutions", Ann. N.Y. Acad. Sci., 1077(1), pp. 650- 667 (2006). https://doi.org/10.1196/annals.1362.026.
29. Lim, E., Kueh, T.C., and Hung, Y.M. "Inversethermocapillary evaporation in a thin liquid film of self-rewetting fluid", Int. J. Num. Method. H., 31(4), pp. 1124-1143 (2020).
https://doi.org/10.1108/HFF- 05-2020-0266.
30. Lin, Y. and Yang, M. "Marangoni flow and mass transfer of power-law non-newtonian fluids over a disk with suction and injection", Commun. Theor. Phys., 72(9), 095003 (2020).
https://doi.org/10.1088/1572- 9494/aba247.
31. Kumari, A. and Tripathi, R. "Rise of a bubble through a self-rewetting fluid under the combined influence of gravity-driven convection and marangoni convection. Proceedings of the Institution of Mechanical Engineers", P.I. Mech. Eng. E.J. Pro, 236(3), pp. 814-823 (2022). https://doi.org/10.1177/09544089211048735.