On the solutal and thermal Marangoni convection arising in the self-rewetting fluid flow under hydromagnetic consideration

Document Type : Article

Authors

Department of Mathematics, National Institute of Technology, Jamshedpur-831014, Jharkhand, India

Abstract

In present research article, we address the magnetically controlled thermal and solutal Marangoni convection in the flow of self-rewetting power-law liquid over a disk, in the existence of space dependent heat source. The self re-wetting property of fluid is modelled by considering a quadratic dependence of surface tension on temperature and species concentration. The aforementioned problem is modelled by simplified Navier-Stokes equations. Identifying the appropriate transform variables is essential for developing ODEs (ordinary differential equations) from original PDEs (partial differential equations) that describe the flow conditions. The resulting ODEs are solved by using bvp4c routine of MATLAB and numerical solutions are presented via Graphs and tables, illustrating the impact of several factors on fluid velocity, temperature, concentration. Computation of the quantities of physical interest viz. Nusselt and Sherwood numbers are also done from those numerical solutions. One of the key finding of present research work is that the Marangoni convection works differently for pseudo--plastic fluid and dilatant fluid. On increasing thermal Marangoni convection the temperature of dilatant fluid reaches a peak value much closer to the disk than temperature of pseudo plastic fluid.

Keywords

Main Subjects


References:
1. Sahu, A.K., Chhabra, R., and Eswaran, V. "Two-dimensional laminar  flow of a power-law fluid across a confined square cylinder", J. Non-Newt. Fluid Mech., 165(13-14), pp. 752-763 (2010). https://doi.org/10.1016/j.jnnfm.2010.03.011.
2. Kumar, A., Tripathi, R., Singh, R., et al. "Simultaneous effects of nonlinear thermal radiation and joule heating on the  flow of williamson nanofluid with entropy generation", Phys. A: Stat. Mech., 551, 123972 (2020). https://doi.org/10.1016/j.physa.2019.123972.
3. Hussain, S.M. and Jamshed, W. "A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid  flow: Implementing finite difference method", Int. Commun. Heat Mass Transf., 129, 105671 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105671.
4. Kumar, A., Singh, R., and Sheremet, M.A. "Analysis and modeling of magnetic dipole for the radiative flow of non-newtonian nanomaterial with arrhenius activation energy", Math. Methods Appl. Sci, (2021). https://doi.org/10.1002/mma.7124.
5. Wang, S. and Yu, B. "Analysis of seepage for power-law  fluids in the fractal-like tree network", Tranp. Porous Media, 87(1), pp. 191-206 (2011). https://doi.org/10.1007/s11242-010-9675-8.
6. Nitin, S. and Chhabra, R. " Sedimentation of a circular disk in power law  fluids", J. Colloid Interface Sci., 295(2), pp. 520-527 (2006).https://doi.org/10.1016/j.jcis.2005.08.024.
7. Bharti, R.P., Sivakumar, P., and Chhabra, R. "Forced convection heat transfer from an elliptical cylinder to power-law  fluids", Int. J. Heat Mass Transf., 51(7-8), pp. 1838-1853 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.032.
8. Ming, C., Zheng, L., and Zhang, X. "Steady flow and heat transfer of the power-law fluid over a rotating disk", Int. Comm. Heat Mass Transf., 38(3), pp. 280-284 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2010.11.013.
9. Li, B., Zheng, L., and Zhang, X. "Comparison between thermal conductivity models on heat transfer in powerlaw non-newtonian  fluids", J. Heat Transf., 134(4), 041702 (2012). https://doi.org/10.1115/1.4004020.
10. Lin, Y. and Jiang, Y. "Effects of brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation", Int. J. Heat Mass Transf., 123, pp. 569-582 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.103.
11. Abdul Gaffar, S., Ramachandra Prasad, V., Ramesh Reddy, P., et al. "Radiative  flow of third grade non-newtonian  fluid from a horizontal circular cylinder", Nonlinear Eng., 8(1), pp. 673-687 (2019). https://doi.org/10.1515/nleng-2018-0078.
12. Sadiq, M.A. and Hayat, T. "Entropy optimized flow of reiner-rivlin nanofluid with chemical reaction subject to stretchable rotating disk", Alexandria Eng. J., 61(5), pp. 3501-3510 (2021). https://doi.org/10.1016/j.aej.2021.08.069.
13. Napolitano, L. "Surface and buoyancy driven free convection", Acta Astronautica, 9(4), pp. 199-215 (1982). https://doi.org/10.1016/0094-5765(82)90023-6.
14. Boeck, T. and Thess, A. "Power-law scaling in benard-marangoni convection at large prandtl numbers", Phy. Review E., 64(2), 027303 (2001).https://doi.org/10.1103/PhysRevE.64.027303.
15. Lin, Y. and Zheng, L. "Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk", AIP Advances, 5(10), 107225 (2015). https://doi.org/10.1063/1.4934932.
16. Gupta, A. and Surya, D. "Convection in a thin liquid layer with mixed thermal boundary conditions: B'enard-marangoni convection", Proc. Natl. Acad. Sci. India - Phys. Sci., 88(1), pp. 73-79 (2018). https://doi.org/10.1007/s40010-016-0339-0.
17. Kumari, A. and Tripathi, R. "Irreversibility analysis of thermo-solutal Marangoni convection in Maxwell power-law- fluid flow", Math. Methods Appl. Sci., 46(8), pp. 9391-9414 (2023).https://doi.org/10.1002/mma.9065.
18. Jin, K., Kumar, P. and Vanka, S. "Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field", Phys. Fluids., 28(9), 093301 (2016). https://doi.org/10.1063/1.4961561.
19. Wilson, S. "The effect of a uniform magnetic field on the onset of steady marangoni convection in a layer of conducting  fluid with a prescribed heat flux at its lower boundary", Phys. Fluids., 6(11), pp. 3591-3600 (1994). https://doi.org/10.1007/BF00127480.
20. Magyari, E. and Chamkha, A. "Exact analytical results for the thermosolutal mhd marangoni boundary layers", Int. J. Therm. Sci., 47(7), pp. 848-857 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.07.004.
21. Abel, M.S., Datti, P.S., and Mahesha, N. "Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source", Int. J. Heat Mass Transf., 52(11-12), pp. 2902-2913 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.042.
22. Jiao, C., Zheng, L., and Ma, L. "MHD thermosolutal marangoni convection heat and mass transport of power law  fluid driven by temperature and concentration gradient", AIP Advances, 5(8), 087160 (2015). https://doi.org/10.1063/1.4929525.
23. Jawad, M., Saeed, A., Gul, T., et al. et al. "Unsteady thermal maxwell power law nano fluid flow subject to forced thermal marangoni convection", Sci. Rep., 11(1), pp. 1-14 (2021). https://doi.org/10.1038/s41598-021-86865-0.
24. Nandi, S. and Kumbhakar, B. "Viscous dissipation and chemical reaction effects on tangent hyperbolic nano fluid flow past a stretching wedge with convective heating and naviers slip conditions", Iran. J. Sci. Technol. - Trans. Mech. Eng., 46(2), pp. 379-397 (2021). https://doi.org/10.1007/s40997-021-00437-1.
25. Tripathi, R. "Marangoni convection in the transient  flow of hybrid nanoliquid thin film over a radially stretching disk", P. I. Mech. Eng. E.J. Pro., 235(4) pp. 800-811 (2021). https://doi.org/10.1177/09544089211008052.
26. Hussain, S.M. "Dynamics of radiative williamson hybrid nano fluid with entropy generation: significance in solar aircraft", Sci. Rep., 12(1), pp. 1-23 (2022a). https://doi.org/10.1038/s41598-022-13086-4.
27. Abbas, N., Shatanawi, W., and Shatnawi, T.AM. "Transportation of nanomaterial Maxwell  fluid flow with thermal slip under the effect of Soret-Dufour and second-order slips: nonlinear stretching", Sci. Reports, 13(1), 2182 (2023). https://doi.org/10.1038/s41598- 022-25600-9.
28. Abe, Y. "Self-rewetting  fluids: Beneficial aqueous solutions", Ann. N.Y. Acad. Sci., 1077(1), pp. 650- 667 (2006). https://doi.org/10.1196/annals.1362.026.
29. Lim, E., Kueh, T.C., and Hung, Y.M. "Inversethermocapillary evaporation in a thin liquid film of self-rewetting  fluid", Int. J. Num. Method. H., 31(4), pp. 1124-1143 (2020). https://doi.org/10.1108/HFF- 05-2020-0266.
30. Lin, Y. and Yang, M. "Marangoni  flow and mass transfer of power-law non-newtonian  fluids over a disk with suction and injection", Commun. Theor. Phys., 72(9), 095003 (2020). https://doi.org/10.1088/1572- 9494/aba247.
31. Kumari, A. and Tripathi, R. "Rise of a bubble through a self-rewetting  fluid under the combined influence of gravity-driven convection and marangoni convection. Proceedings of the Institution of Mechanical Engineers", P.I. Mech. Eng. E.J. Pro, 236(3), pp. 814-823 (2022). https://doi.org/10.1177/09544089211048735.
Volume 31, Issue 13 - Serial Number 13
Transactions on Mechanical Engineering (B)
July and August 2024
Pages 1007-1019
  • Receive Date: 08 May 2022
  • Revise Date: 23 November 2022
  • Accept Date: 14 June 2023