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Abstract. In the present research article, we address the magnetically controlled thermal
and solutal Marangoni convection in the ow of self-rewetting power-law liquid over a
disk, in the existence of a space dependent heat source. The self re-wetting property of
uid is modelled by considering a quadratic dependence of surface tension on temperature
and species concentration. The aforementioned problem is modelled by simpli�ed Navier-
Stokes equations. Identifying the appropriate transform variables is essential for developing
ordinary di�erential equations from original partial di�erential equations that describe
the ow conditions. The resulting ordinary di�erential equations are solved by using the
bvp4c routine of MATLAB and numerical solutions are presented via graphs and tables,
illustrating the impact of several factors on uid velocity, temperature, and concentration.
Computation of the quantities of physical interest such as Nusselt and Sherwood numbers
are also done from those numerical solutions. One of the key �ndings of present research
work is that the Marangoni convection works di�erently for pseudo-plastic uid and dilatant
uid. On increasing thermal Marangoni convection the temperature of dilatant uid reaches
a peak value much closer to the disk than temperature of pseudo plastic uid.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Non-Newtonian uids are widely used in industry and
science, including microuidic devices, oil recovery and
blood rheology, among others. Because of the nonlinear
dependence of shear stress with shear strain Sahu et
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al. [1], these uids are more di�cult to model than
Newtonian uids. Non-Newtonian uids are classi�ed
into several categories and there are di�erent models
depicting their behaviour. This has been duly noted
and explained in the works of Kumar et al. [2], Hussain
and Jamshed [3] and Kumar et al. [4]. Power law uid
is one such uid model. It is based on the viscosity
model for time-independent coe�cient of viscosity and
can be used to model various uids used in industrial
applications. The magnitude of the power-law index
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determines the physical trait of the uid; it may
behave like shear-thinning (pseudo-plastic), Newtonian
or shear-thickening (dilatant) uid Wang and Yu [5].
The rheological equation of state for a power-law uid
is given as:

�r = K
����@U@Z ����n�1 @U

@Z
;

in which K denotes ow consistency index and @U
@Z

gives shear rate normal to the plane of shear. The
uid is classi�ed as Newtonian for power-law index
n = 1, a pseudoplastic when n � (0; 1), and a Dilatant
uid for n > 1. In recent past, a lot of studies were
done to investigate power-law uid ow under various
conditions. Nitin and Chhabra [6] considered the
axi-symmetric two-dimensional power-law uid moving
past a circular surface. The heat transport analysis
for the ow of an incompressible power-law uid with
forced convection over a heated elliptical cylinder was
done by Bharti et al. [7]. Ming et al. [8] discussed
the ow of a power-law liquid over an in�nite rotating
disk about the transverse direction. Li et al. [9] in
their study considered di�erent thermal conductivity
models in their investigation of two-dimensional power
law uid ow in a circular duct. Li and Jiang [10]
investigated two di�erent models of thermophoresis
and Brownian di�usion e�ects on Newtonian and non-
Newtonian uid ow in a rotating groove. Ga�ar et
al. [11] considered e�ect of the buoyancy on third grade
uid owing over cylinder by considering the uid to
be radiative, using Keller-Box technique. Sadiq and
Hayat [12] investigated the three-dimensional incom-
pressible ow of a non-Newtonian Reiner-Rivlin uid
owing over a shrinking/streching rotating circular
surface with thermophoresis, Brownian and random
di�usion e�ects.

The Marangoni convection may occur at a uid-
uid interface when there is a gradient in the interfacial
tension. As a result, uid movement is observed
from regions with smaller interfacial tension toward
those with higher interfacial tension. The thermal
Marangoni convection (also known as thermocapillary
convection) and/or solutal Marangoni convection ap-
pears when surface tension relies on the thermal and/or
concentration distributions. In last few decades, many
researchers have studied the ow due to Marangoni
convection owing to their vast occurance in natu-
ral as well as industrial phenomena such as tear of
wines, evaporation-condensation cycle in heat pipes,
controlled Marangoni convection in crystal growth,
etc. Also, Marangoni convection a�ects a wide range
of processes occurring at a nonisothermal interface.
Napolitano [13] discussed the buoyancy as well as
Marangoni convection at the interface of two immisci-
ble uid and performed an order of magnitude analysis
to ascertain di�erent ow regime for natural and

Marangoni convection. Boeck and Thess [14] examined
the two-dimensional thermocapillary convection on the
free surface with high value of the Prandtl number.
Lin and Zheng [15] discussed the Marangoni convection
in the Cu-based nanouid owing over a porous disk.
Gupta and Surya [16] considered Benard-Marangoni
convection on ow of thin liquid �lm with linear surface
tension. In a Maxwell power-law uid ow Kumari
and Tripathi [17] examined the irreversibility analysis
of thermo-solutal Marangoni convection.

As discussed above, the presence of solutal and
thermal gradients induce Marangoni convection. How-
ever, a controlled Marangoni convection is required
in some engineering application such as coating of
chemical on semiconductor substrate. Also, while
growing perfect crystals in space-ships, sometimes un-
controlled Marangoni convection results in the crystal
of substandard quality. It has been pointed out that
controlled Marangoni convection can be achieved by
applying a suitable magnetic �eld Jin et al. [18].
Such requirement in the past encouraged researchers
to investigate the Marangoni convection when the ow
region is inuenced by magnetic �eld. Wilson [19]
numerically determined the inuence of Marangoni
convection as well as magnetic �eld in horizontal layer
of a uid owing over a rigid lower surface when heat
ux is already prescribed. Magyari and Chamkha [20]
found exact solution of Magneto-Marangoni convection
and elaborated their simultaneous inuences on heat
transfer. Abel et al. [21] contemplated the hydro-
magnetic treatment of stagnation point ow of a uid
governed by power law. Jiao et al. [22] discussed
Magnetohydrodynamic ow of a uid regulated by
power law, past a surface by considering Marangoni
convection due to concentration and thermal gradients
under Magneto hydro dynamic e�ects. Jawad et al.
[23] analysed thermo-capillary convection of Maxwell
power-law nano liquid owing over an elongating sur-
face while considering the heat dissipation produced by
magnetic �eld. Nandi and Kumbhakar [24] analyzed
the ow of tangent hyperbolic nanouid owing over
a wedge under Hydromagnetic assumptions. Tripathi
[25] discussed the ow of hybrid nano-liquid past an
elongating disk by considering the e�ect of Marangoni
convection. He found that the use of blade-shaped
nano particles in hybrid nano-liquid result in maximum
heat transfer at the disk surface. Hussain [26] carried
out the quadratic regression approximation analysis for
heat transport rate and ow parameters of nanouids.
The signi�cance of heat generation/absorption, mag-
netic and other parameters results are shown graph-
ically. heat on sun-based radiations and a technique
to improve the presentation of a solar water pump
using sunlight-based radiations and nanotechnology
and show the results graphically by using the Keller box
numerical scheme. Maxwell uid ow with a thermal
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slip under the inuence of Soret-Dufour and second-
order nonlinear stretching slips due to the presence of
magnetic �eld were examined by Abbas et al. [27].

Liquids generally exhibit a decrement in surface
tension when temperature is increased. But self re-
wetting uids have the property that with an increase
in temperature, initially surface tension decreases,
approaches a minimum and then rises again. This
behavior may be explained by the mathematical re-
lation � = �0 + T

2 (T � T0)2. The rising surface
tension at a greater temperature can lead to a uid
being drawn toward a hot surface, where there is a
dry area, therefore improving boiling heat transfer.
Since gradient in the concentration too gives rise to
variation in surface tension, therefore a mathematical
relation of the form: � = �0 + T

2 (T � T0)2 + C
2 (C �

C0)2, describes a self-rewetting uid with thermal and
solutal Marangoni convection. With such distinctive
behavior, self-rewetting uid �nds applications in heat
transfer devices such as heat pipe, which is way more
e�cient than other traditional technics. Encouraged
by the usefulness of self rewetting uids, Abe and
Iwasaki [28] conducted an experiment in microgravity
region involving two adjacent vapour bubbles of self-
wetting uid and observed that thermocapillary action
aided in the coalescence of two bubbles. Lim et
al. [29] examined the thermo-capillary e�ect in the
thin �lm ow of a uid whose surface tension varies
quadratically with temperature. Lin and Yang [30]
studied the mass transfer Marangoni ow of a self re-
wetting power-law uid past a solid porous surface. As
per their observation, power-law exponent reduces the
shear stress as well as the velocity and concentration
boundary layers. Kumari and Tripathi [31] performed
a theoretical analysis on the movement of a uid bubble
through a self re-wetting uid by considering both
natural and Marangoni convections in the existence of
a magnetic �eld. They observed that the attening
of the bubble can be curbed by intensifying magnetic
�eld.

For surface tension driven ows over various
geometries, researchers have either considered a lin-
ear surface tension- temperature and/or linear sur-
face tension- concentration relation. However, the
dependency of surface tension on temperature and/or
concentration of non-linear nature has not been dis-
cussed yet, which actually corresponds to self-rewetting
uid. Also, as discussed above, presence of magnetic
�eld is essential for controlling Marangoni convection,
yet such an analysis is absent from the literature.
Self-rewetting uid are an important class of uid
which have many applications in heat transfer and also
there are some applications of self-rewetting uid in
crystal growth in the reduced gravity environment. We
observed that for such important kind of uid, a detail
study of the convection arising in reduced gravitational

environment in the presence of external heat generating
source under the inuence of magnetic �eld have not
been discussed previously. Through this article we aim
to �ll this gap. The research problem of this kind is
very relevant in real life heat transfer instruments such
as heat pipe, in which phase change in the form of
vaporization and condensation is used to transfer heat
from one point to other.

2. Mathematical formulation

In this study, we consider a two dimensional, steady
ow of a self re-wetting power-law uid owing over
a circular surface, induced by thermal and solutal
Marangoni convection. Permeation of the magnetic
�eld along the transverse direction is also considered
whereas the e�ect of induced magnetic �eld is not
considered. A schematic of the considered problem
is demonstrated in Figure 1, in which we have made
use of cylindrical-polar coordinate. Following are the
assumptions that have gone into modelling the ow
situation:

� The Marangoni convection appears at the inter-
facial region of self re-wetting uid, at Z = H,
and the thickness of the uid layer H(t) is time-
dependent, where H is denotes the thickness of the
uid in dimensional form;

� The temperature distribution at the disk surface
is given as: T 0 = T0 + AR

1
2�n whereas the con-

centration distribution at the surface is given as:
C 0 = C0 +AR

1
2�n of the disk surface;

� A magnetic �eld of variable nature: B = B0

q
UR
U0R0

is permeating in the Z-direction;

� The energy balance equation is written in the
consideration of heat source: Q = Q0

�
UR
U0R0

�
;

� Surface tension-temperature-concentration relation
is expressed as � = �0 + T

2 (T �T0)2 + C
2 (C�C0)2;

Figure 1. Geometry of the problem.
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where T = @2�
@T 02

���
T 0=T0

, C = @2�
@C2

���
C=C0

, and �0

are positive constants.

In accordance with the aforementioned assumptions,
the partial di�erential equations for mass, momentum,
and energy transfers of self re-wetting power-law liquid
over the disk surface is given as follows:

@U
@R

+
U
R

+
@W
@Z

= 0; (1)

U
@U
@R

+W
@U
@Z

=
@
@Z

 
�
����@U@Z ����n�1 @U

@Z

!
��B2

�
U; (2)

U
@T 0
@R

+W
@T 0
@Z

=
@
@Z

 
�
����@T 0@Z

����n�1 @T 0
@Z

!
+

Q
�cp

(T 0 � T0) ; (3)

U
@C 0
@R

+W
@C 0
@Z

=
@
@Z

 
�
����@C 0@Z

����n�1 @C 0
@Z

!
: (4)

The boundary conditions as per the assumptions are:

at Z = 0 : U = 0; T 0 = T0; C 0 = C0; (5)

at Z = H : �
����@U@Z ����n�1 @U

@Z
= � @�

@R
; W =

@H
@t

;

T 0= T0 +AR
1

2�n ; C 0= C0 +AR
1

2�n : (6)

In these equations, (U;W ) represent velocity compo-
nents in R and Z directions, temperature and species
concentration are in dimensional form denoted as T 0
and C 0 respectively. Kinematic viscosity, mass di�usiv-
ity and thermal di�usivity are each expressed as K0 =

�
��@U
@Z

��n�1, K2 = �
���@C0@Z

���n�1
, and K1 = �

���@T 0@Z

���n�1

respectively, where �, �, and � are positive constants.
In the above equation, � represents the surface tension
of a uid, � represents the electrical conductivity of
uid, � represents the density of a uid, cp represents
the speci�c heat at constant pressure of uid, A is a
positive constant term and n represents the power-law
index of a conducting uid.

Eqs. (1) to (4) along with Conditions (5) and (6)
are written in dimensional form. In order to convert
these equations in non-dimensional form, following
non-dimensional variables are used:

u=
U
U0
; r=

R
R0

; z=
Z
R0

Re
1

n+1 ; w=
W
U0
Re

1
n+1 ;

C =
C 0
C0
; T =

T 0
T0
; h =

H
R0

Re
1

n+1 : (7)

After incorporating Eq. (7), governing Eqs. (1) to (4)
are rewritten into dimensionless form, given below:

@u
@r

+
u
r

+
@w
@z

= 0; (8)

u
@u
@r

+ w
@u
@z

=
@
@z

 ����@u@z ����n�1 @u
@z

!
� �B2R0

�U0
u; (9)

u
@T
@r

+ w
@T
@z

=
1
Pr

@
@z

 ����@T@z ����n�1 @T
@z

!
+

QR0

�cpU0
(T � 1) ; (10)

u
@C
@r

+ w
@C
@z

=
1
Sc

@
@z

 ����@C@z ����n�1 @C
@z

!
: (11)

The non-dimensional form of boundary conditions are
given as:

at z = 0 : u = 0; C = 1; T = 1; (12)

at z = h :
����@u@z ����n�1

@u
@z

=
1

n� 2

�
MaT
Pr

+
MaC
Sc

�
Re

�3
n+1 r

n
2�n ;

w = u
@h
@r
; T = 1 +

A
T0
R

1
2�n
0 r

1
2�n ;

C = 1 +
A
C0
R

1
2�n
0 r

1
2�n ; (13)

where the dimensionless parameters Re = U2�n
0 Rn0
�� ,

Pr = ��
�U1�n

0 Tn�1
0

, and Sc = ��
�U1�n

0 Cn�1
0

are Reynolds
number, Prandtl number, and Schmidt number re-

spectively. MC
a = CA2

�
R

n
2�n+n
0

U0Cn�1
0 Re

3�n
n+1

and MT
a =

TA2

�
R

n
2�n+n
0

U0Tn�1
0 Re

3�n
n+1

represent the solutal and thermal

Marangoni numbers respectively.
In order to solved partial di�erential Eqs. (8) to

(11) along with Conditions (12) and (13), we convert
them into ordinary di�erential equations by using
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suitable similarity variables, which are given as:

� = C2z; u = C1r
1

2�n f 0(�);

w = �C1

C2

3� n
2� nr

n�1
2�n f(�);

T = 1 +
A
T0
R

1
2�n
0 r

1
2�n �(�);

C = 1 +
A
C0
R

1
2�n
0 r

1
2�n�(�);

B2 = B2
0C1r

n�1
2�n ; Q = Q0C1r

n�1
2�n ;

where:

C1 =
�
A
C0
R

1
2�n
0

�
; C2 =

�
A
C0
R

1
2�n
0

� 2�n
n+1

:

After applying the similarity variables, governing Eqs.
(8) to (11) are changed into following non-linear equa-
tions:�

1
2� n

�
f 02 �

�
3� n
2� n

�
ff 00 =

@
@�

�jf 00jn�1 f 00
�
;

�Mf 0 (14)�
1

2� n
�
f 0� �

�
3� n
2� n

�
f�0 =

1
Pr

@
@�

�j�0jn�1 �0
�

+Q� (15)

�
�

1
2� n

�
f 0��

�
3� n
2� n

�
f�0 =

1
Sc

@
@�

�j�0jn�1 �0
�
: (16)

Converted boundary condition are given as:

at � = 0 : f 0 (0) = 0; � (0) = 0; � (0) = 0; (17)

at � = � : f 00 (�) =
�
MT
a +M c

a
� 1
n ;

f (�) = �C2

�
2� n
3� n

�
@h
@r
rf 0 (�) ;

� (�) = 1; � (�) = 1; (18)

where magnetic parameter is de�ned as M = �B2
0R0
�U0

,
heat generation or absorption coe�cient is de�ned as
Q� = Q0R0

�CpU0
. The thermal and solutal Marangoni

numbers MT
a and M c

a, are given as:

M c
a =

1
n� 2

MaC
Sc

Re� 3
n+1 (C1C2)�n ; (19)

MT
a =

1
n� 2

MaT
Pr

Re� 3
n+1 (C1C2)�n : (20)

2.1. Quantities of physical interest
The Nusselt number Nur estimates the heat transfer
rate and the Sherwood number Shr presents a measure
of mass transfer rate at the disk surface. These two
quantities are de�ned as follows:

Nur =
rqz

K1(T0 � Th)
; (21)

Shr =
rCz

K2(C0 � Ch)
; (22)

where K1 is the thermal di�usivity of the uid, K2
is mass di�usivity, qz and Cz are the heat and mass
transfer rates from the surface respectively, and they
are given by:

qz = �K1
@T
@z

����
z=0

; (23)

Cz = �K2
@C
@z

����
z=0

: (24)

The dimensionless form of Nusselt number Nu and
Sherwood number Sh are:

Nu =
Nur
C2r

= ��0(0); (25)

Sh =
Shr
C2r

= ��0(0): (26)

3. Solution methodology

A numerical solution of system of Eqs. (14) to
(16) constraint to Conditions (17) and (18) can be
obtained by bvp4c method. In order to make use of
bvp4c method, the similarity expression for velocity,
temperature and concentration are given in terms new
set of variables yi, i = 1 : 7, to de�ne variables f , f 0,
f 00, �, �0, �, and �0 and writing Eqs. (14) to (16) in the
following form:

y01 = y2; (27)

y02 = y3; (28)

y03 =
1

njy3jn�1

�
y2

2
2� n+My2 �

�
3� n
2� n

�
y1y3

�
; (29)

y04 = y5; (30)

y05 =
Pr

njy5jn�1

�
y2y4

2� n�Q�y4�
�

3� n
2� n

�
y1y5

�
; (31)

y06 = y7; (32)

y07 =
Sc

njy7jn�1

�
y2y6

2� n �
�

3� n
2� n

�
y1y7

�
: (33)
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Table 1. Comparison of values of f(0) and �(0) for various values of n with published results for MT
a = 0, Mc

a = 0,
M = 0, and Q = 0 with reversible boundary conditions.

Power law
index n

Lin and
Yang f(0)

Present paper
for velocity

Lin
and Yang �(0)

Present paper
for concentration

0.3 0.631403 0.631429 0.936506 0.936509
0.5 0.621587 0.621585 0.919006 0.919008
0.7 0.611383 0.611378 0.899606 0.899627
1.0 0.566154 0.566109 0.881908 0.881987

The above system is solved subject to conditions given
in Eqs. (17) and (18), by taking initial guesses for each
variable with the help of bvp4c routine of MATLAB.

4. Validation of numerical solution

To judge the precision of numerical method, we have
realized an assessment for the numerical values of
velocity f(0) and concentration �(0) with MT

a = 0,
M c
a = 0, M = 0, Q = 0 against n and reversible

boundary conditions at � = 0 and � = � with those
of Lin and Yang [30]. An excellent agreement is found
between our result and that of Lin and Yang [30], which
is shown in Table 1. This ensures that our numerical
approach is trustworthy and that it may be utilized for
the computation of further results.

5. Result and discussion

On �nding the solution of system of 1st-order simulta-
neous Eqs. (27) to (33) subject to the conditions at the
boundary in given Eqs. (17) and (18) using method
explained above, results for velocity, temperature,
concentration as well as quantities of physical interest
i.e., Nusselt number Nu and Sherwood number Sh, are
obtain and have been presented in Figures 2 to 15 along
with the Tables 2 and 3. In these �gures, the e�ect of
pertinent ow parameters MT

a , MC
a , M , Q, Pr, Sc,

and n, on velocity, temperature and concentration, are
shown.

Figures 2{4 show how magnetic �eld M a�ects
velocity f 0(�), temperature �(�) and concentration
�(�). It's seen that on increasing magnetic param-
eter M , the velocity of uid decelerates, while the
temperature and concentration of uid increase. Such
behavior of velocity, temperature, and concentration
can be attributed to the property of magnetic �eld,
which creates resistance to uid velocity and gen-
erates a type of resistive force. Thus, intensifying
magnetic �eld results in increased temperature and
concentration. Figures 5 and 6 illustrate the inuence
of thermal Marangoni parameter MT

a on velocity f 0(�)
and temperature �(�). In their study, the e�ect of
thermal Marangoni parameter was exactly opposite to
our �nding in this research. Such an outcome is due

Figure 2. This graph illustrates the relationship between
velocity f 0(�) and magnetic parameter M .

Figure 3. This graph illustrates the relationship between
temperature �(�) and magnetic parameter M .

to self re-wetting property of the uid. Figures 7 and
8 show the impact of solutal Marangoni parameter
M c
a on velocity f 0(�) and concentration �(�). When

the solutal Marangoni parameter increases, velocity
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Figure 4. This graph illustrates the relationship between
concentration �(�) and Magnetic parameter M .

Figure 5. This graph illustrates the relationship between
velocity f 0(�) and thermal Marangoni parameter MT

a .

of uid decreases, while the opposite is observed for
concentration. Figure 9 illustrates the inuence of heat
source parameter Q on temperature �(�). It is seen
that increment in Q triggers a rise in temperature.
Speci�cally, for an elevated value of Q, the heat source
processes become more powerful, which leads to more
heat entering the liquid and thus the higher temper-
ature �(�). Figure 10 illustrates the inuence of Pr
has on temperature �(�).This graph demonstrates that
as Pr is raised, temperature rises as well. Figure 11
illustrates the inuence that power-law index n has on
velocity f 0(�). We observe that an increase in the value
of n form 0.4 to 0.8 results in a continuous decrement
in the velocity. Since an increase in n strengthens

Figure 6. This graph illustrates the relationship between
temprature �(�) and thermal marangoni parameter MT

a .

Figure 7. This graph illustrates the relationship between
velocity f 0(�) and solutal Marangoni parameter Mc

a .

the dimensionless shear stress, hence we observe a
decrement in uid velocity f 0(�) when n increases.
Figure 12 illustrates the inuence that Sc has on
concentration �(�). Upon increasing Schmidt number
Sc, �(�) increases. Basically, the value of concentration
raises due to a reduction in mass dissipation. Figure
13 illustrates the e�ect of thermal Marangoni number
MT
a on the velocity f 0(�) while neglecting the solutal

Marangoni convection i.e. by taking M c
a = 0. As the

value of MT
a increases, the uid velocity decreases. In

order to see the di�erence between e�ects of Marangoni
parameters on pseudo-plastic uid and that on dilatent
uid. We have drawn Figures 14 and 15. These �gures
illustrate the impact of thermal and solutal Marangoni
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Figure 8. This graph illustrates the relationship between
concentration �(�) parameter Mc

a .

Figure 9. This graph illustrates the relationship between
temperature �(�) and heat source parameter Q.

number on temperature and concentration of dilatent
uid respectively. We see that increase in MT

a leads to
rise in temperature, whereas an increase in M c

a tends
to increase the concentration. On comparing Figures 6
and 14, we see that a peak in temperature of dilatent
uid is observed before the peak in temperature of
pseudo-plastic uid, also there is a more pronounced
e�ect of thermal Marangoni parameter on dilatent
uid. A comparison of Figures 7 and 15 show that the
e�ect of M c

a on pseudo-plastic uid is more pronounced
then the e�ect of M c

a on dilatent uid.
The rates with which the transfer of heat and

mass at the surface of disk take place, are given in terms
of Nusselt number and Sherwood number respectively.

Figure 10. This graph illustrates the relationship
between temperature �(�) and Prandtl number Pr.

Figure 11. This graph illustrates the relationship
between velocity f 0(�) and power-law index number n.

Their estimates against di�erent parameter are shown
in Tables 2 and 3. It is perceived from Table 2 that
an elevation in the parameter M tends to diminish the
Nusselt number. The magnetic �eld induces a force
that reduces the uid velocity, due to this intermolecu-
lar friction between uid layers diminishes, so the heat
transfer rate gets dropped and the Nusselt number
decreases. We also observed that the thermal and
solutal Marangoni parameters as well as the power-law
index a�ect the Nusselt number adversely. This can be
explain in the context of e�ect of Marangoni parameter
on uid velocity. It is observed from Figures 5 and
7 that an increase in MT

a and M c
a reduces the uid

velocity and also, di�erent layers move with varying
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Figure 12. This graph illustrates the relationship
between concentration �(�) and Schmidt number Sc.

Figure 13. This graph illustrates the relationship
between velocity f 0(�) and thermal Marangoni parameter
MT
a .

velocities. This leads to an increase in the friction
between di�erent layers and as a result Nusselt number
decreases. We see that when the value of parameters
Pr and Q are increased, the Nusselt number decreases.

It's ascertained from Table 3 that an elevation
in the parameter M tends to diminish the Sherwood
number. It means that Sh is decreased by increasing
the concentration of a uid. We also observe that the
solutal Marangoni parameters as well as the power-
law index a�ect the Sherwood number adversely. Such
e�ect of solutal Marangoni parameter on Sherwood
number can be explain in the view of e�ect of M c

a
on concentration pro�le since increasing M c

a result in
increment of concentration pro�le through the bound-

Figure 14. This graph illustrates the relationship
between temprature �(�) and thermal Marangoni
parameter MT

a .

Figure 15. This graph illustrates the relationship
between concentration �(�) and Solutal Marangoni
parameter MT

a .

ary layer and this result in decreased concentration
gradient and therefore, we observe reduced Sherwood
number on increasing M c

a .

6. Conclusions

For the purpose of this research, we examined the
thermal and solutal Marangoni convection in the self-
rewetting power-law uid owing over a disk surface,
while a magnetic �eld pervade the concerned domain
and heat source a�ects the thermal distribution. A
summary of important �ndings based on results ob-
tained can be found below:
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Table 2. Nusselt number Nu for distinct parameters.

M MT
a Mc

a n Pr Q ��0(0)

1 0.0371
2 0.0215
3 0.3 0.3 0.4 6 0.1 0.0083

0.1 0.3229
0.2 0.1784

1 0.3 0.3 0.4 6 0.1 0.0371

0.1 0.3229
0.2 0.1784

1 0.3 0.3 0.4 6 0.1 0.0371

0.4 0.0371
0.5 0.0252

1 0.3 0.3 0.6 6 0.1 0.0133

5 0.1345
6 0.0371

1 0.3 0.3 0.4 7 0.1 0.0015

0 0.3840
0.1 0.0371

1 0.3 0.3 0.4 6 0.2 0.0002

Table 3. Sherwood number Sh for distinct parameters.

M MT
a Mc

a n Sc ��0(0)

1 0.4954
2 0.4602
3 0.3 0.3 0.4 5 0.4158

0.1 0.8366
0.2 0.6995

1 0.3 0.3 0.4 5 0.4954

0.1 0.8366
0.2 0.6995

1 0.3 0.3 0.4 5 0.4954

0.4 0.4954
0.5 0.4469

1 0.3 0.3 0.6 5 0.4206

1 0.9102
2 0.8146

1 0.3 0.3 0.4 3 0.7131

� Intensifying magnetic �eld ramps-up the temper-
ature and concentration of liquid, which in turn
decelerates the uid velocity;

� A rise in the rate of thermo-capillary convection
tends to increase the temperature of a liquid whereas
uid velocity decelerates. Both the thermal and

solutal Marangoni convections have noteworthy in-
uence at the interfacial region. It shows positive
impact on heat transfer rate due to which uid
velocity increases. Also on increasing the Marangoni
parameters, thickness of uid �lm reduces;

� The inuence of both kind of convections at the
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interface a�ect the dilatant uid and pseudo-plastic
uid di�erently. On enhancing the thermo-capillary
convection, the temperature of Dilatant uid shoots-
up rather quickly as compared to pseudo-plastic
uid. However concentration of pseudo plastic uid
is more sensitive to solutal Marangoni convection
than that of dilatant uid;

� There is a smooth increment in the concentration of
liquid when n > 1, whereas for n = 1, the increse in
concentration is rather quick.

Future work:

� Researchers have not explored the unsteady induced
magnetic �eld e�ect with hybrid nanouids on a
circular surface with nonlinear radiation parameters
in the past, we would like to work on this;

� Researchers have not investigated the self-rewetting
power law uid with Arrhenius activation energy
in the presence of induced magnetic �eld yet. We
would like to carry out this work in the future;

� Researchers are yet to discuss the Soret and Dufour
e�ects on a self-rewetting power law uid ow over a
circular disk with homogeneous and heterogeneous
reaction.

Nomenclature

R;Z Radial and transverse direction, m
U;W Velocity component in radial and

transverse direction, m/s
hr; hz Magnetic component in radial and

transverse direction
T 0 Temperature, K
C' Concentration
Q Heat generation/absorption parameter
H Fluid thickness, m
MHD Magnetohydrodynamics
R0; Q0 Positive constant
n Power-law index
r; z Radial and transverse direction
u;w Velocity component in radial and

transverse direction
T Temperature
C Concentration
Q� Heat generation/absorption parameter
h Fluid thickness
2�D Two dimensional
T0 Temperature at the disk surface
t Time, s

Greek symbols
Re Reynolds number
Sh Sherwood number
Pr Prandtl number
�z Shear stress of the uid, Pa
� Magnetic Prandtl number

MT
a Thermal Marangoni number

MC
a Solutal Marangoni number

cf Skin friction coe�cent
T ; C Surface tension coe�cients for

temperature and concentration
�e Magnetic di�usivity
� Thermal di�usivity, m2/s
cp Speci�c heat at constant pressure,

J/(kgK)
� Kinematic viscosity, m2/s
M Magnetic parameter
� Surface tension, m/s2

qz Surface heat ux, W/m2

�0 Initial surface tension
� Electrical conductivity
B0 Applied magnetic �eld
Nu Nusselt number
� Film thickness
� Density of the uid, kg/m3

K Flow consistency index
K0;K1;K2 Positive constant
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