Entropy optimization of non-Newtonian hybrid nanofluid flow with non-linear radiation, exponential and thermal-dependent heat source: Neuro-intelligent design

Document Type : Research Article

Authors

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu-632014, India

Abstract

The prediction of entropy generation with a thermal and exponential space dependent heat source of unsteady flow over a rotating disk is the artifact of the paper. For the specific physical model, non-Newtonian fluids like Oldroyd-B within EMHD fluid flow is encrypted. Also, mechanism of cobalt and tantalum nanoparticles with in the blood is employed. The proper self-similarity variables are used to convert the non-linear PDE system of equations into an ODE form, which is then calculated using the Runge–Kutta 4th with shooting technique and artificial neural network (ANN). Visual representations are used to show how different skewing interact with each other. With a few exceptions, the research findings of the model are quite consistent with those reported in the literature. The skin friction coefficients rise for the increase in the electric field whereas rate of heat transfer declines. Nusselt number and skin frictions decrease for the parameters like radiation, Eckert number, Brinkman number and exponential based heat source. Also, entropy generation rises for magnetic field and Brinkman number whereas opposite tendency is observed for the electric field.

Keywords

Main Subjects


References:
1.Abbas, S.Z., Khan, W.A., Waqas, M., et al. “Exploringthe features for flow of Oldroyd-B liquid film subjectedto rotating disk with homogeneous/heterogeneousprocesses”, Comput. Methods Programs Biomed., 189,105323(2020). https://doi.org/10.1016/J.CMPB.2020.105323.
2.Hafeez, A., Khan, M., and Ahmed, J. “Stagnation pointflow of radiative Oldroyd-B nanofluid over a rotatingdisk”, Comput. Methods Programs Biomed., 191, p.105342 (2020).https://doi.org/10.1016/j.cmpb.2020.105342.
3.Waqas, H., Imran, M., Muhammad, T., et al. “Numericalinvestigation on bioconvection flow of Oldroyd-Bnanofluid with nonlinear thermal radiation and motilemicroorganisms over rotating disk”, J. Therm. Anal.Calorim. 2020 1452, 145(2), pp. 523–539 (2020).https://doi.org/10.1007/S10973-020-09728-2.
4.Hafeez, A., Khan, M., and Ahmed, J. “Thermal aspectsof chemically reactive Oldroyd-B fluid flow over arotating disk with Cattaneo–Christov heat flux theory”,J. Therm. Anal. Calorim. 2020 1443, 144(3), pp. 793–803 (2020).https://doi.org/10.1007/S10973-020-09421-4.
5.Oldroyd, J.G. “On the formulation of rheologicalequations of state”, Proc. R. Soc. London. Ser. A. Math.Phys. Sci., 200(1063), pp. 523–541 (1950).https://doi.org/10.1098/RSPA.1950.0035.
6.Wang, J., Ijaz Khan, M., Khan, W.A., et al.“Transportation of heat generation/absorption andradiative heat flux in homogeneous–heterogeneouscatalytic reactions of non-Newtonian fluid (Oldroyd-Bmodel)”, Comput. Methods Programs Biomed., 189, p.105310 (2020).https://doi.org/10.1016/J.CMPB.2019.105310.
7.Khan, M., Hafeez, A., and Ahmed, J. “Impacts of non-linear radiation and activation energy on theaxisymmetric rotating flow of Oldroyd-B fluid”, Phys.A Stat. Mech. its Appl., 580, p. 124085 (2021).https://doi.org/10.1016/J.PHYSA.2019.124085.
8.Shivakumara, I.S. and Sureshkumar, S., “Effects ofthroughflow and quadratic drag on the stability of adoubly diffusive Oldroyd-B fluid-saturated porouslayer”, J. Geophys. Eng., 5(3), pp. 268–280 (2008).https://doi.org/10.1088/1742-2132/5/3/003.
9.Mahanthesh, B., Shashikumar, N.S., Gireesha, B.J., etal. “Effectiveness of Hall current and exponential heatsource on unsteady heat transport of dusty TiO2-EODes. Eng., 6(4), pp. 551–561 (2019). https://doi.org/10.1016/J.JCDE.2019.04.005.
10.Khan, M.I., Qayyum, S., Chu, Y.M., et al.“Transportation of Marangoni convection and irregularheat source in entropy optimized dissipative flow”, Int.Commun. Heat Mass Transf., 120, p. 105031 (2021). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2020.105031.
11.Mahanthesh, B., Gireesha, B.J., Animasaun, I.L., et al.“MHD flow of SWCNT and MWCNT nanoliquids pasta rotating stretchable disk with thermal and exponentialspace dependent heat source”, Phys. Scr., 94(8), p.085214 (2019).https://doi.org/10.1088/1402-4896/AB18BA.
12.Fatehinasab, R., Shafiee, H., Afshari, M., et al. “Hybridsurveying of radiation and magnetic impacts onMaxwell fluid with MWCNT nanotube influence of twowire loops”, ZAMM - J. Appl. Math. Mech. / Zeitschriftfür Angew. Math. und Mech., 103(1), e202200186(2023).https://doi.org/10.1002/ZAMM.202200186.
13.Ferdosi, S., Mohammadyahya, N., and Abasi, M. “Axialbuckling of single-walled nanotubes simulated by anatomistic finite element model under differenttemperatures and boundary conditions”, Int J Sci EngApp, 11(11). pp. 151-163, (2022).https://doi.org/10.7753/IJSEA1111.1002.
14.Jakeer, S. and Bala Anki Reddy, P. “Entropy generationon EMHD stagnation point flow of hybrid nanofluidover a stretching sheet: Homotopy perturbationsolution”, Phys. Scr., 95(12), p. 125203 (2020).https://doi.org/10.1088/1402-4896/abc03c.
15.Khan, M.I., Qayyum, S., Hayat, T., et al. “Entropygeneration minimization and statistical declaration withprobable error for skin friction coefficient and Nusseltnumber”, Chinese J. Phys., 56(4), pp. 1525–1546(2018).https://doi.org/10.1016/j.cjph.2018.06.023.
16.Rashidi, M.M., Abelman, S., and Mehr, N.F., “Entropygeneration in steady MHD flow due to a rotating porousdisk in a nanofluid”, Int. J. Heat Mass Transf., 62(1), pp. 515–525 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.
17.Reddy, P.B.A. and Das, R. “Estimation of MHDboundary layer slip flow over a permeable stretchingcylinder in the presence of chemical reaction throughnumerical and artificial neural network modeling”, Eng.Sci. Technol. an Int. J., 19(3), pp. 1108–1116 (2016).https://doi.org/10.1016/j.jestch.2015.12.013.
18.Raghu, S. and Sriraam, N. “Optimal configuration ofmultilayer perceptron neural network classifier forrecognition of intracranial epileptic seizures”, ExpertSyst. Appl., 89, pp. 205–221 (2017).https://doi.org/10.1016/J.ESWA.2017.07.029.
19.Hasan, T.T., Jasim, M.H., and Hashim, I.A., “Heartdisease diagnosis system based on multi-layerperceptron neural network and support vector machine”, Int. J. Curr. Eng. Technol., 77(55), pp. 2277–4106 (2017).
20.Heidari, A.A., Faris, H., Aljarah, I., et al. “An efficienthybrid multilayer perceptron neural network withgrasshopper optimization”, Soft Comput., 23(17), pp.7941–7958 (2019).https://doi.org/10.1007/S00500-018-3424-2.
21.Waris, A., Din, M., Ali, A., et al. “Green fabrication ofCo and Co3O4nanoparticles and their biomedicalapplications: A review”, Open Life Sci., 16(1), pp. 14–30 (2021). https://doi.org/10.1515/BIOL-2021-0003.
22.Khan, M., Ali, W., and Ahmed, J. “A hybrid approach tostudy the influence of Hall current in radiative nanofluidflow over a rotating disk”, Appl. Nanosci., 10(12), pp.5167–5177 (2020).https://doi.org/10.1007/s13204-020-01415-w.
23.Hafeez, A., Khan, M., and Ahmed, J. “Flow of Oldroyd-B fluid over a rotating disk with Cattaneo–Christovtheory for heat and mass fluxes”, Comput. MethodsPrograms Biomed., 191, p. 105374 (2020).https://doi.org/10.1016/j.cmpb.2020.105374.
24.Hafeez, A., Khan, M., Ahmed, A., et al. “Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christovdouble diffusion theory”, Appl. Math. Mech. (EnglishEd.) 41(7), pp. 1083–1094 (2020).https://doi.org/10.1007/s10483-020-2629-9.
25.Ahmad, F., Gul, T., Khan, I., et al. “MHD thin film flowof the Oldroyd-B fluid together with bioconvection andactivation energy”, Case Stud. Therm. Eng., 27(July),101218 (2021).https://doi.org/10.1016/j.csite.2021.101218.
26.Mumraiz, S., Ali, A., Awais, M., et al. “Entropygeneration in electrical magnetohydrodynamic flow ofAl2O3–Cu/H2O hybrid nanofluid with non-uniform heatflux”, J. Therm. Anal. Calorim., 143, pp. 2135-2148(June) (2020).https://doi.org/10.1007/s10973-020-09603-0.
27.Reddy, P.B.A. “Biomedical aspects of entropygeneration on electromagnetohydrodynamic blood flowof hybrid nanofluid with nonlinear thermal radiation and non-uniform heat source/sink”, Eur. Phys. J. Plus,135(10), pp. 1–30 (2020).https://doi.org/10.1140/epjp/s13360-020-00825-7.
28.Uddin, I., Ullah, I., Raja, M.A.Z., et al. “Design ofintelligent computing networks for numerical treatmentof thin film flow of Maxwell nanofluid over a stretchedand rotating surface”, Surfaces and Interfaces,24(February), 101107 (2021).https://doi.org/10.1016/j.surfin.2021.101107.
29.Mustafa, I., Javed, T., and Ghaffari, A. “Heat transfer inMHD stagnation point flow of a ferrofluid over astretchable rotating disk”, J. Mol. Liq., 219, pp. 526–532(2016).https://doi.org/10.1016/J.MOLLIQ.2016.03.046.
30.Ahmed, J., Khan, M., Ahmad, L., et al. “Thermallyradiative flow of Maxwell nanofluid over a permeable rotating disk”, Phys. Scr., 94(12), p. 125016 (2019). https://doi.org/10.1088/1402-4896/AB3B9A.
31.Rashidi, M.M., Ali, M., Freidoonimehr, N., et al.“Parametric analysis and optimization of entropygeneration in unsteady MHD flow over a stretchingrotating disk using artificial neural network and particleswarm optimization algorithm”, Energy, 55, pp. 497–510 (2013).https://doi.org/10.1016/j.energy.2013.01.036.
32.Asadi, S., Shahrabi, J., Abbaszadeh, P., et al. “A newhybrid artificial neural networks for rainfall–runoffprocess modeling”, Neurocomputing, 121, pp. 470–480(2013).https://doi.org/10.1016/J.NEUCOM.2013.05.023.
33.Seo, Y., Kim, S., Kisi, O., et al. “Daily water levelforecasting using wavelet decomposition and artificialintelligence techniques”, J. Hydrol., 520, pp. 224–243(2015). https://doi.org/10.1016/J.JHYDROL.2014.11.050.
34.Aichouri, I., Hani, A., Bougherira, N., et al. “River flowmodel using artificial neural networks”, EnergyProcedia, 74, pp. 1007–1014 (2015).https://doi.org/10.1016/J.EGYPRO.2015.07.832.
35.Toha, S.F., Tokhi, M.O., and Md Salleh, S. “Parametricmodelling of a twin rotor system”, Mob. Robot. Solut.Challenges - Proc. 12th Int. Conf. Climbing Walk.Robot. Support Technol. Mob. Mach. CLAWAR 2009,pp. 285–292 (2010).https://doi.org/10.1142/9789814291279_0037.
36.Kumar, S., Indian, A., and Khan, Z. “Neural networkmodel for prediction of ground water level inmetropolitan considering rainfall-runoff as aparameter”, Int. J. Soft Comput. Eng., (3), pp. 2231–2307 (2013).
37.Hagan, M.T. and Menhaj, M.B., “Training FeedforwardNetworks with the Marquardt Algorithm”, IEEE Trans.Neural Networks, 5(6), pp. 989–993 (1994).https://doi.org/10.1109/72.329697.
Volume 32, Issue 3
Transactions on Nanotechnology
January and February 2025 Article ID:7291
  • Receive Date: 07 November 2022
  • Revise Date: 17 February 2023
  • Accept Date: 18 June 2023