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Keywords Abstract 

The prediction of entropy generation with a thermal and exponential space dependent heat source 
of unsteady flow over a rotating disk is the artifact of the paper. For the specific physical model, 
Oldroyd-B within fluid flow is encrypted. Also, mechanism of cobalt and tantalum nanoparticles 
with in the blood is employed. The proper self-similarity variables are used to convert the non-
linear PDE system of equations into an ODE form, which is then calculated using the Runge–Kutta 
4th with shooting technique and artificial neural network. Visual representations are used to show 
how different skewing interact with each other. With a few exceptions, the research findings of the 
model are quite consistent with those reported in the literature. Skin frictions decrease for the 
parameters like radiation, Eckert number, Brinkman number and exponential based heat source. 
Nusselt number rises for electric and unsteady parameters. Also, entropy generation rises for 
magnetic field and Brinkman number whereas opposite tendency is observed for the electric field.  
Since cobalt stimulates red blood cell production, while tantalum is employed in bone implants and 
iodinated agents for blood imaging due to its long circulation time. Thus, this research may be used 
to treat anemia. 
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1. Introduction
In comparison to Newtonian materials, non-Newtonian 
materials have become more prevalent in the mechanical, 
commercial and industrial areas in recent decades. This is due 
to the fact that Newtonian fluids cannot predict elastic 
characteristics, but non-Newtonian fluids can possesses the 
highest viscoelastic property [1]. Mud, ketchup, glues, blood, 
fiber, mineral oils, ink, shampoos, chemical solutions, paints, 
exotic lubricants, cosmetics, annealing of copper wire, colloids 
and suspensions, clay coatings, coal water and a range of other 
thin and thick substances behave like non-Newtonian fluids and 
are treated as such kind [2,3]. Furthermore, such fluids are 
employed in synthetic processes, oil store construction, culinary 
products, material handling and in the multitude of 
different applications [4]. For the most part of non-Newtonian 
fluids, they are divided into three categories: differential, rate, 
and integral. The stress relaxation and creep processes are 
demonstrated by the fluids in rate type. One of that rate-type 
fluids is represented by the Oldroyd-B model, which is an 
extension of the upper convicted viscoelastic Maxwell fluid 
model with retardation time. Oldroyd-B [5] investigated this  

model of fluid. Actually, the progression of Oldroyd-B fluid is 
more suited to fit the rheological data rather than other non-
Newtonian models, according to a literature review [6]. Khan et 
al. [7] investigated the  Oldroyd-B fluid flow using Karman 
transformations to formulate the problem over a rotating disk. 
The investigation of Oldroyd-B nanofluid with cross diffusion 
effects was did by Khan et al. [7] and he discovered that the 
dufour effect enhances the thermal profile. Hafeez et al. [4] 
recently investigated Oldroyd-B fluid flow which is chemically 
reactive with Cattaneo–Christov heat flux theory over a rotating 
disk. Shivakumara and SureshKumar  [8] investigated Oldroyd-
B fluid with the effects of flow and quadratic drag on the 
stability in a region of porous.  

Chemical or nuclear processes generate heat energy within 
a body as an interior energy source/sink. Its significance may be 
observed in combustion research, heat exchangers, production 
of plastic, thermal insulation, fusion reactors, paper and steel 
manufacturing, nuclear reactors, among other things. The 
effects of an internal heat source/sink may be studied using two 
models. The first is a uniform temperature dependent internal 
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heat source/sink process, while the second is a non-uniform 
space. In general, Thermal based Heat Source (THS) has two 
dimensionless components which is encrypted in the energy 
equation, one for analyzing THS and the other for analyzing 
space based heat sources [9]. But these two models may not 
be able to accomplish more heat transmission in the fluid 
boundary layer, according to science. So, an Exponential 
Space-based Heat Source (ESHS) effect has been developed 
as a novel model for intensive heating processes in light of 
these findings. Khan et al. [10] studied irregular heat source 
with Marangoni convective flow over a disk which is 
rotating. Mahanthesh et al. [11] performed MHD flow 
with thermal and exponential space dependent heat source of 
SWCNT and MWCNT nanofluid over a rotating stretchable 
disk. Radiation on Maxwell fluid with in MWCNT nanotube 
was investigated by Fatehinasab et al. [12] and Ferdosi et 
al.[13]. 

Entropy generation or production is the rate of heat 
transfer in any irreversible process. Usually, diffusion, Joule 
heating, chemical reactions, flow of heat through thermal 
resistance, fluid’s viscosity, friction of solid surfaces are 
some of the irreversible processes that produce entropy. 
Although there are numerous reasons for entropy generation 
in this process, some of those can be named as heat 
exchange, fluid movement, mixing and expansion of 
substances, solid deformation, motion of bodies or any 
irreversible thermodynamic cycle. For example, heat pumps, 
air conditioners, heat engines, power plants and so on [10]. 
Jakeer and Reddy [14] investigated entropy generation of a 
hybrid nanofluid with electromagnetohydrodynamic 
(EMHD) stagnation point. Khan et al. [15] investigated the 
dynamics of MHD nanomaterial in three dimensional flow 
with entropy generation between two rotating disks. Rashidi 
et al. [16] explored the entropy generation of MHD steady 
flow owing to a spinning porous disk.  

Several research on the uses of Artificial Neural Network 
(ANN) in thermodynamics have been conducted in recent 
years. Reddy and Das [17] analyzed MHD boundary layer 
flow with chemical reaction employing a mix of ANN 
modelling and numerical over a stretched cylinder. Raghu 
and Sriraam [18] explored the best configuration of a 
multilayer perceptron neural network classifier for detecting 
intracranial epileptic episodes. Hasan et al. [19] studied a 
heart disease related detection system through which Multi-
Layer Perceptron neural network is used. Heidari et al. [20] 
developed a grasshopper optimization in the multilayer 
perceptron neural network for the hybrid.  

To the best of the authors' knowledge, no research has 
been done on entropy generation in EMHD with a thermal 
and exponential space dependent heat source of unsteady 
flow over a rotating disk. The governing flow of non-linear 
partial differential equations are converted into a system of 
highly non-linear ordinary differential equations using 
appropriate similarity transformations, which are then 
numerically solved using a Runge–Kutta fourth order with 
shooting technique and then ANN is applied. To satisfy our 
criteria, we constructed the necessary graphs and tables for 
the established parameters. For this work, we used blood as  

 
Figure 1. Geometry of the problem. 

the base fluid and nano particles like tantalum and cobalt to 
enhance Oldroyd-B fluid. The current study aims to be useful 
in clinical applications where tantalum is used as a 
nanoparticle that is easily oxidized in the air due to its high 
reactivity, as well as in the treatment of microbial 
infections and since cobalt nanoparticles are nontoxic at low 
concentrations [21] and have minimal side effects than 
antibiotics. 

2. Formulation of the problem 

Consider a non-Newtonian Oldroyd-B fluid over a rotating 
disk with an unsteady EMHD conducting flow of hybrid 
nanofluid where the disk is stretchable. Also, non-linear 
thermal radiation and ESHS (irregular heat source/sink) is 
taken into an account. Here, disk rotates with an uniform 
magnetic field 𝐵𝐵0 and has the angular velocity 𝛺𝛺 which is 
placed at 𝑧𝑧 = 0 as shown in Figure 1. The disk has a surface 
temperature termed as 𝑇𝑇𝑠𝑠 and the temperature away from the 
disk as 𝑇𝑇∞. For the solvation of this problem, the following 
presumptions are used: 

𝑢𝑢 =
𝑐𝑐𝑐𝑐

(1 − 𝑏𝑏𝑏𝑏)
 ,   𝑣𝑣 =
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The equations for continuity, momentum and energy that 
govern this form of flow are as follows [22-25]: 
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The Rosseland approximation may be used to represent the 
radiative heat flux, where 𝜎𝜎∗ and 𝑘𝑘∗ are the Stefan 
Boltzmann and mean absorption coefficients, respectively. 
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The non-linear dimensionless equations are as follows: 
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�𝑀𝑀(𝐸𝐸1 − 𝑛𝑛 ′) = 0,         (9) 

�
𝑁𝑁1
𝑁𝑁3
� 𝛽𝛽2(2𝑔𝑔′𝑛𝑛″ − 2𝑛𝑛𝑔𝑔‴) − 𝛽𝛽1(4𝑛𝑛 ′2𝑔𝑔 + 4𝑛𝑛2𝑔𝑔″ − 4𝑛𝑛𝑛𝑛 ′𝑔𝑔′ 

−4𝑛𝑛𝑛𝑛″𝑔𝑔) − 𝑆𝑆(
𝜂𝜂
2
𝑔𝑔′ + 𝑔𝑔) − 2(𝑔𝑔′𝑛𝑛 − 𝑛𝑛 ′𝑔𝑔) + �

𝑁𝑁1
𝑁𝑁3
� 𝑔𝑔″ 

−�
𝑁𝑁1
𝑁𝑁3
� 𝛽𝛽𝑔𝑔 + �

𝑁𝑁2
𝑁𝑁3
�𝑀𝑀[𝐸𝐸1 − 𝑔𝑔] = 0,                                   (10) 

�
𝑁𝑁4
𝑁𝑁5
� 𝜃𝜃″ + 𝑅𝑅𝑅𝑅 �

1
𝑁𝑁5
� �

4
3
� �

𝜃𝜃″ + (𝜃𝜃𝑣𝑣 − 1)3(3𝜃𝜃2𝜃𝜃 ′2 + 𝜃𝜃3𝜃𝜃″)
+3(𝜃𝜃𝑣𝑣 − 1)2(2𝜃𝜃𝜃𝜃 ′2 + 𝜃𝜃2𝜃𝜃″)

+3(𝜃𝜃𝑣𝑣 − 1)(𝜃𝜃 ′2 + 𝜃𝜃𝜃𝜃″)
� 

+ �
𝑁𝑁1
𝑁𝑁5
� 𝑃𝑃𝑐𝑐 𝐸𝐸 𝑐𝑐(𝑛𝑛″2 + 𝑔𝑔′2) + 2𝑃𝑃𝑐𝑐(𝑛𝑛𝜃𝜃 ′ − 𝜃𝜃𝑛𝑛 ′) 

−𝑆𝑆 𝑃𝑃𝑐𝑐 �
3
2
𝜃𝜃 +

𝜂𝜂
2
𝜃𝜃 ′� + �

𝑁𝑁2
𝑁𝑁5
�𝑀𝑀𝐸𝐸𝑐𝑐 𝑃𝑃𝑐𝑐(𝑛𝑛 ′2 + 𝑔𝑔2 + 𝐸𝐸12) 

+ �
1
𝑁𝑁5
�𝑃𝑃𝑐𝑐 𝑄𝑄𝑏𝑏 𝜃𝜃 + �

1
𝑁𝑁5
�𝑃𝑃𝑐𝑐 𝑄𝑄 𝐸𝐸𝑒𝑒𝑒𝑒(−𝑛𝑛𝑛𝑛) = 0.                 (11) 

With the boundary conditions as: 

𝑛𝑛 ′ = 𝜔𝜔,  𝑔𝑔 = 1,  𝑛𝑛 = 0,  𝜃𝜃 = 1,                   at   𝜂𝜂 = 0                                                     

𝑛𝑛″ → 0,  𝑛𝑛 ′ → 0,  𝑔𝑔 → 0,  𝑔𝑔′ → 0,  𝜃𝜃 → 0   as   𝜂𝜂 → ∞   (12)  
 
The dimensionless parameters are as: 

𝑆𝑆 = 𝑏𝑏
𝑟𝑟

 , 𝜔𝜔 = 𝑐𝑐
𝑟𝑟

,  𝛽𝛽 = 𝜐𝜐(1−𝑏𝑏𝑏𝑏)
𝑘𝑘∗𝑟𝑟

,  𝑃𝑃𝑐𝑐 = 𝜇𝜇𝑓𝑓(𝐶𝐶𝑝𝑝)𝑓𝑓
𝑘𝑘𝑓𝑓

,  𝛽𝛽1 = 𝜆𝜆1𝑟𝑟
1−𝑏𝑏𝑏𝑏

, 

𝛽𝛽2 = 𝜆𝜆2𝑟𝑟
1−𝑏𝑏𝑏𝑏

,  𝑅𝑅𝑅𝑅 = 4𝜎𝜎∗𝑇𝑇0
3

𝑘𝑘∗𝑘𝑘𝑓𝑓
, 𝜃𝜃𝑣𝑣 = 𝑇𝑇𝑠𝑠

𝑇𝑇0
, 𝐸𝐸𝑐𝑐 = 𝑟𝑟2𝑟𝑟2

(1−𝑏𝑏𝑏𝑏)2(𝛥𝛥𝑇𝑇)(𝐶𝐶𝑝𝑝)𝑓𝑓
,  

𝑄𝑄 = 𝑄𝑄𝐸𝐸
∗ (1−𝑏𝑏𝑏𝑏)
(𝜌𝜌𝑐𝑐𝑝𝑝)𝑟𝑟

,  𝑛𝑛 = 𝑧𝑧�𝑟𝑟
𝜐𝜐
,   𝑀𝑀 = �𝜎𝜎𝑓𝑓𝐵𝐵0

2

𝜌𝜌𝑓𝑓𝑟𝑟
�,  𝑄𝑄𝑏𝑏 =

𝑄𝑄𝑇𝑇
∗ (1−𝑏𝑏𝑏𝑏)

(𝜌𝜌𝑐𝑐𝑒𝑒)𝛺𝛺
, 

 𝑁𝑁1 = 𝜇𝜇ℎ𝑛𝑛𝑓𝑓
𝜇𝜇𝑓𝑓

,  𝑁𝑁2 = 𝜎𝜎ℎ𝑛𝑛𝑓𝑓
𝜎𝜎𝑓𝑓

, 𝑁𝑁3 = 𝜌𝜌ℎ𝑛𝑛𝑓𝑓
𝜌𝜌𝑓𝑓

, 𝑁𝑁4 = 𝑘𝑘ℎ𝑛𝑛𝑓𝑓
𝑘𝑘𝑓𝑓

,  

𝑁𝑁5 = (𝜌𝜌𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑓𝑓
(𝜌𝜌𝐶𝐶𝑝𝑝)𝑓𝑓

, 𝐸𝐸1 = �𝐸𝐸0(1−𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟𝐵𝐵0

�. 

3. Engineering interest quantities 
The skin friction of both the velocities are defined as follows: 

𝐶𝐶𝑟𝑟 = 𝜏𝜏𝑤𝑤1(1−𝑏𝑏𝑏𝑏)2

𝜌𝜌𝑓𝑓(𝑟𝑟𝑟𝑟)2
,                                                                      (13)                                                                                                                    

𝐶𝐶𝑔𝑔 = 𝜏𝜏𝑤𝑤2(1−𝑏𝑏𝑏𝑏)2

𝜌𝜌𝑓𝑓(𝑟𝑟𝑟𝑟)2
,                                                                      (14)                                                                                                                    

Here,  𝜏𝜏𝑣𝑣1 = 𝜇𝜇ℎ𝑛𝑛𝑟𝑟 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

, 𝜏𝜏𝑣𝑣1 = 𝜇𝜇ℎ𝑛𝑛𝑟𝑟 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

, 

𝑅𝑅𝑒𝑒𝑥𝑥
1
2 𝐶𝐶𝑟𝑟 = 𝑁𝑁1𝑛𝑛″(0),                                                                  (15)                                                                                                                 

𝑅𝑅𝑒𝑒𝑥𝑥
1
2 𝐶𝐶g = 𝑁𝑁1𝑔𝑔′(0).                                                                  (16)                                                                                                                  

The heat transfer rate, often known as the Nusselt number, is 
the physical quantity of concern in this subject. 

  𝑁𝑁𝑢𝑢𝑟𝑟 = 𝑟𝑟𝑞𝑞𝑤𝑤
𝑘𝑘𝑓𝑓(𝑇𝑇𝑠𝑠−𝑇𝑇0)

 ,                                                                  (17)                                                                                                                

where 𝑞𝑞𝑣𝑣 = �−𝑘𝑘ℎ𝑛𝑛𝑟𝑟  �𝜕𝜕𝑇𝑇
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

�+ �16𝜎𝜎
∗𝑇𝑇∞3

3𝑘𝑘∗𝑘𝑘𝑓𝑓
�
𝑧𝑧=0

,            

𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥
−1
2 = −�𝑁𝑁4 + 4

3
𝑅𝑅𝑅𝑅[1 + (𝜃𝜃𝑣𝑣 − 1)𝜃𝜃(0)]3� 𝜃𝜃′(0),        (18) 

where 𝑅𝑅𝑒𝑒𝑥𝑥 is the local Reynolds number and it can be written 
as: 

𝑅𝑅𝑒𝑒𝑥𝑥 =�
𝑐𝑐2𝛺𝛺

𝜐𝜐(1 − 𝑏𝑏𝑏𝑏)
�. 

4. Exploration of entropy generation 
Within the influences of electric and magnetic forces, the 
phrase for volumetric entropy generation number is given as 
follows [15,16,26,27]: 
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𝑆𝑆𝑔𝑔𝑟𝑟𝑛𝑛‴ =
𝑘𝑘ℎ𝑛𝑛𝑟𝑟
𝑇𝑇02

��
𝜕𝜕𝑇𝑇
𝜕𝜕𝑧𝑧
�
2

+
16𝜎𝜎∗𝑇𝑇03

3𝑘𝑘∗𝑘𝑘ℎ𝑛𝑛𝑟𝑟
�
𝜕𝜕𝑇𝑇
𝜕𝜕𝑧𝑧
�
2

� 

          +
𝜇𝜇ℎ𝑛𝑛𝑟𝑟
𝑇𝑇0

��
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧
�
2

+ �
𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧
�
2

� 

          +
𝜎𝜎ℎ𝑛𝑛𝑟𝑟

𝑇𝑇0(1 − 𝑏𝑏𝑏𝑏)
[𝐸𝐸02 + 𝐵𝐵02(𝑢𝑢2 + 𝑣𝑣2)].                          (19) 

The conduction, viscosity, and joule effects are all included 
in the above equation. The first term in the above formula 
exhibits irreversibility through heat conduction. The 
irreversibility produced by frictional effects is represented by 
the second term and the corresponding joule dissipation 
involving the magnetic and electric fields is represented by 
the third term. The entropy generation number can be stated 
as the dimensionless counterpart of the entropy generation 
rate, which is the ratio of the actual and characteristic entropy 
generation rates. So, the reduced entropy generation number 
equation can be written as follows: 

𝑁𝑁𝐺𝐺 = 𝛼𝛼1 �𝑁𝑁4 + 4
3
𝑅𝑅𝑅𝑅(1 + 𝜃𝜃(𝜃𝜃𝑣𝑣 − 1))3� 𝜃𝜃 ′2         

       +𝑁𝑁1𝐵𝐵𝑐𝑐(𝑛𝑛″2 + 𝑔𝑔′2) + 𝑁𝑁2𝑀𝑀𝐵𝐵𝑐𝑐{𝐸𝐸12 + 𝑛𝑛 ′2 + 𝑔𝑔2}.        (20)  

Here, the dimensionless parameters are given below: 

𝑁𝑁𝐺𝐺 = 𝑇𝑇0𝑆𝑆𝑔𝑔𝑔𝑔𝑛𝑛‴ 𝜐𝜐(1−𝑏𝑏𝑏𝑏)
𝑘𝑘𝑓𝑓𝑟𝑟𝛥𝛥𝑇𝑇

,    𝛥𝛥𝑇𝑇 = (𝑇𝑇𝑠𝑠 − 𝑇𝑇0),    𝛼𝛼1 = 𝛥𝛥𝑇𝑇
𝑇𝑇0

,   

𝐵𝐵𝑐𝑐 =
𝜇𝜇𝑟𝑟𝑐𝑐2𝛺𝛺2

𝑘𝑘𝑟𝑟(𝑇𝑇𝑠𝑠 − 𝑇𝑇0)(1 − 𝑏𝑏𝑏𝑏)2
 .  

But the entropy generation number is inadequate to 
overcome the difficulty like, the dominance of irreversibility 
mechanisms which is physically significant. To comprehend 
entropy generation methods, the Bejan number is used, 
which is the ratio of entropy generation owing to heat 
transfer to overall entropy generation. 

𝐵𝐵𝑒𝑒 =
𝛼𝛼1 �𝑁𝑁4 + 4

3𝑅𝑅𝑅𝑅(1 + 𝜃𝜃(𝜃𝜃𝑣𝑣 − 1))3� 𝜃𝜃′2

𝛼𝛼1 �𝑁𝑁4 + 4
3𝑅𝑅𝑅𝑅(1 + 𝜃𝜃(𝜃𝜃𝑣𝑣 − 1))3� 𝜃𝜃′2 + 𝑁𝑁1𝐵𝐵𝑐𝑐(𝑛𝑛″2 + 𝑔𝑔′2)

. 

                                                                                                     (21) 

Table 1 values and the quantities are used to get the output 
of the program in MATLAB. The hybrid nanofluid quantities 
are defined as: 

Dynamic viscosity 

𝜇𝜇ℎ𝑛𝑛𝑟𝑟 =
𝜇𝜇𝑟𝑟

(1 − 𝜙𝜙𝑇𝑇𝑇𝑇)2.5(1 − 𝜙𝜙𝐶𝐶𝐶𝐶)2.5 ,                                     (22) 

Density: 

𝜌𝜌ℎ𝑛𝑛𝑟𝑟 = 𝜌𝜌𝑟𝑟(1 − 𝜙𝜙𝐶𝐶𝐶𝐶) �(1 − 𝜙𝜙𝑇𝑇𝑇𝑇) + 𝜙𝜙𝑇𝑇𝑇𝑇 �
𝜌𝜌𝑇𝑇𝑇𝑇
𝜌𝜌𝑟𝑟

��            

                + 𝜙𝜙𝐶𝐶𝐶𝐶(𝜌𝜌𝐶𝐶𝐶𝐶).                                                                    (23) 

Heat capacity 

(𝜌𝜌𝑐𝑐𝑝𝑝)ℎ𝑛𝑛𝑟𝑟 = (𝜌𝜌𝑐𝑐𝑝𝑝)𝑟𝑟(1 − 𝜙𝜙𝐶𝐶𝐶𝐶)(1 − 𝜙𝜙𝑇𝑇𝑇𝑇) + 𝜙𝜙𝑇𝑇𝑇𝑇(𝜌𝜌𝑐𝑐𝑝𝑝)𝑇𝑇𝑇𝑇 

                  +𝜙𝜙𝐶𝐶𝐶𝐶(𝜌𝜌𝑐𝑐𝑝𝑝)𝐶𝐶𝐶𝐶   .                                                     (24) 

 

Electrical conductivity   

𝜎𝜎ℎ𝑛𝑛𝑟𝑟
𝜎𝜎𝑏𝑏𝑟𝑟

= �
(1 + 2𝜙𝜙𝐶𝐶𝐶𝐶)𝜎𝜎𝐶𝐶𝐶𝐶 + 2(1 − 𝜙𝜙𝐶𝐶𝐶𝐶)𝜎𝜎𝑏𝑏𝑟𝑟

(1 − 𝜙𝜙𝐶𝐶𝐶𝐶)𝜎𝜎𝐶𝐶𝐶𝐶 + (2 + 𝜙𝜙𝐶𝐶𝐶𝐶)𝜎𝜎𝑏𝑏𝑟𝑟
� ,                  (25) 

where, 
𝜎𝜎𝑏𝑏𝑓𝑓
𝜎𝜎𝑓𝑓

= �(1+2𝜙𝜙𝑇𝑇𝑇𝑇)𝜎𝜎𝑇𝑇𝑇𝑇+2(1−𝜙𝜙𝑇𝑇𝑇𝑇)𝜎𝜎𝑓𝑓
(1−𝜙𝜙𝑇𝑇𝑇𝑇)𝜎𝜎𝑇𝑇𝑇𝑇+(2+𝜙𝜙𝑇𝑇𝑇𝑇)𝜎𝜎𝑓𝑓

�. 

Thermal conductivity      

𝑘𝑘ℎ𝑛𝑛𝑟𝑟
𝑘𝑘𝑏𝑏𝑟𝑟

= �
(1 + 2𝜙𝜙𝐶𝐶𝐶𝐶)𝑘𝑘𝐶𝐶𝐶𝐶 + 2(1 − 𝜙𝜙𝐶𝐶𝐶𝐶)𝑘𝑘𝑏𝑏𝑟𝑟

(1 − 𝜙𝜙𝐶𝐶𝐶𝐶)𝑘𝑘𝐶𝐶𝐶𝐶 + (2 + 𝜙𝜙𝐶𝐶𝐶𝐶)𝑘𝑘𝑏𝑏𝑟𝑟
� ,                  (26) 

where, 
𝑘𝑘𝑏𝑏𝑓𝑓
𝑘𝑘𝑓𝑓

= �(1+2𝜙𝜙𝑇𝑇𝑇𝑇)𝑘𝑘𝑇𝑇𝑇𝑇+2(1−𝜙𝜙𝑇𝑇𝑇𝑇)𝑘𝑘𝑓𝑓
(1−𝜙𝜙𝑇𝑇𝑇𝑇)𝑘𝑘𝑇𝑇𝑇𝑇+(2+𝜙𝜙𝑇𝑇𝑇𝑇)𝑘𝑘𝑓𝑓

�. 

5. Method of solution 
5.1. Runge-Kutta (RK) 4th order method 

A boundary value issue is formed by Eqs. (9)-(11) and the 
boundary conditions of Eq. (12). Entropy generation Eq. (20) 
and Bejan number Eq. (21) are also converted as a result of 
this. The shooting technique is used to solve these equations 
by transforming them to an initial value problem. For this, 
we convert the above-mentioned non-linear ordinary 
differential equations to a system of first-order differential 
equations as follows: 

𝑛𝑛 = ℘1, 𝑛𝑛 ′ = ℘2, 𝑛𝑛″ = ℘3, 𝑛𝑛‴ = ℘4, 𝑛𝑛𝑖𝑖𝑢𝑢 = ℘4
′, 𝑔𝑔 = ℘5, 

𝑔𝑔′ = ℘6, 𝑔𝑔″ = ℘6
′ , 𝜃𝜃 = ℘8, 𝜃𝜃′ = ℘9, 𝜃𝜃″ = ℘9

′ . 

℘4
′

= ⎣
⎢
⎢
⎢
⎡ 2(𝑛𝑛1/𝑛𝑛3)𝛽𝛽2℘3

2 − 𝛽𝛽1(4℘1℘5℘6 + 4℘1
2℘4

−4℘1℘2℘3) + (𝑛𝑛1/𝑛𝑛3)℘4 + (𝑛𝑛2/𝑛𝑛3)𝑀𝑀(𝐸𝐸1 − ℘2)
−(𝑛𝑛1/𝑛𝑛3)𝛽𝛽℘2 − 𝑆𝑆(℘2 + (𝜂𝜂/2)℘3

+�℘5
2 + 2℘1℘3 −℘2

2� ⎦
⎥
⎥
⎥
⎤

2 �𝑛𝑛1𝑛𝑛3
� 𝛽𝛽2℘1

, (27) 

℘7
′

= ⎣
⎢
⎢
⎢
⎡2(𝑛𝑛1/𝑛𝑛3)𝛽𝛽2℘3℘6 − 𝛽𝛽1(4℘2

2℘5 + 4℘1
2℘7

−4℘1℘2℘6 − 4℘1℘3℘5) + (𝑛𝑛1/𝑛𝑛3)℘7
+(𝑛𝑛2/𝑛𝑛3)𝑀𝑀(𝐸𝐸1 − ℘5) − (𝑛𝑛1/𝑛𝑛3)𝛽𝛽℘5    
−𝑆𝑆[(𝜂𝜂/2)℘6 + ℘5] − 2(℘2℘5 − ℘6℘1) ⎦

⎥
⎥
⎥
⎤

2 �𝑛𝑛1𝑛𝑛3
�𝛽𝛽2℘1

,                (28) 

Table 1. Thermophysical properties of hybrid nanofluid. 
Physical 

properties Blood Tantalum 
(Ta) 

Cobalt 
(Co) 

ρ (kgm−3)  3617 16650 8900 

𝐶𝐶𝑝𝑝(J(kg)−1K−1)  1050 140 445 

𝑘𝑘 (W(m−1K−1))  0.52 57 100 

σ (Ωm)−1  1.33 7.7× 106  1.7× 107  

   𝑃𝑃𝑃𝑃  21   
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℘9
′ = − ⎣

⎢
⎢
⎢
⎢
⎡ (4/3)(𝑅𝑅𝑅𝑅/𝑛𝑛5)[(𝑇𝑇𝜕𝜕 − 1)3�3℘8

2℘9
2� + 3(𝑇𝑇𝜕𝜕 − 1)2

�2℘8℘9
2� + 3(𝑇𝑇𝜕𝜕 − 1)�℘9

2��+ (𝑛𝑛1/𝑛𝑛5)𝐸𝐸𝑐𝑐 𝑃𝑃𝑐𝑐(℘3
2 + ℘6

2)
+2𝑃𝑃𝑐𝑐(℘1℘9 −℘8℘2)− 𝑆𝑆𝑃𝑃𝑐𝑐[ (3/2)℘8 + (𝜂𝜂/2)℘9]

+(𝑃𝑃𝑐𝑐/𝑛𝑛5)𝑄𝑄𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒(−𝑛𝑛𝑛𝑛) + (𝑃𝑃𝑐𝑐/𝑛𝑛5)𝑄𝑄𝑏𝑏℘8
+(𝑛𝑛2/𝑛𝑛5)𝑀𝑀𝐸𝐸𝑐𝑐 𝑃𝑃𝑐𝑐(℘2

2 + ℘5
2 + 𝐸𝐸12) ⎦

⎥
⎥
⎥
⎥
⎤

(𝑛𝑛4/𝑛𝑛5) + (𝑅𝑅𝑅𝑅/𝑛𝑛5)(4/3)[1 + (𝑇𝑇𝜕𝜕 − 1)3℘8
3

+3�𝑇𝑇𝜕𝜕 − 1)2℘8
2 + 3(𝑇𝑇𝜕𝜕 − 1)℘8�

. 

                                                                                                   (29) 
Now the boundary conditions as: 

℘1(0) = 0,   ℘2(0) = 𝜔𝜔,   ℘5(0) = 1,   ℘8(0) = 1, 

℘2(∞) = 0,   ℘3(∞) = 0,   ℘5(∞) = 0,   ℘6(∞) = 0,            

℘8(∞) = 0.                                                                              (30) 

Followed by the entropy generation and Bejan number as 
shown below: 

𝑁𝑁𝐺𝐺 = 𝛼𝛼1�𝑛𝑛4 + (4/3)(𝑅𝑅𝑅𝑅)[1 + ℘8(𝑇𝑇𝜕𝜕 − 1)]3�℘9
2 

      +𝑛𝑛1𝐵𝐵𝑐𝑐�℘3
2 +℘6

2� + 𝑛𝑛2𝑀𝑀𝐵𝐵𝑐𝑐�𝐸𝐸12 + ℘2
2 +℘5

2�,          (31) 

𝐵𝐵𝑒𝑒 =
𝛼𝛼1�𝑛𝑛4 + (4/3)(𝑅𝑅𝑅𝑅)[1 + ℘8(𝑇𝑇𝜕𝜕 − 1)]3�℘9

2

𝛼𝛼1�𝑛𝑛4 + (4/3)(𝑅𝑅𝑅𝑅)[1 +℘8(𝑇𝑇𝜕𝜕 − 1)]3�℘9
2

+𝑛𝑛1𝐵𝐵𝑐𝑐(℘3
2 + ℘6

2) + 𝑛𝑛2𝑀𝑀𝐵𝐵𝑐𝑐(𝐸𝐸12 + ℘2
2 + ℘5

2)

.     (32) 

The values of ℘4(0) , ℘7(0) and ℘9(0) i.e., 𝑛𝑛‴(0), 𝑔𝑔″(0) 
and 𝜃𝜃′(0) is required to integrate Eqs. (27) – (29) as an initial 
value problem, but such kind of values are not furnished at 
the boundary. So, the appropriate guess values are 
picked and then the integration process is performed. The 
selection of a suitable finite value of 𝜂𝜂 at ∞is the most critical 
aspect of the shooting procedure. To find 𝜂𝜂 at ∞ for the 
boundary value issue, we start with some initial estimate 
values for a certain set of physical parameters, culminating 
in obtain 𝑛𝑛‴(0), 𝑔𝑔″(0), and 𝜃𝜃′(0). The operation is repeated 
with another enormous values of 𝜂𝜂 at ∞ until two 
consecutive values of 𝑛𝑛‴(0), 𝑔𝑔″(0), and  𝜃𝜃′(0) differ only 
by one significant digit. The most acceptable value of the 
limit 𝜂𝜂 at ∞ for that specific collection of parameters is 
eventually chosen as the last value of 𝜂𝜂 at ∞. For a different 
set of physical factors, the value of 𝜂𝜂 at ∞may change. The 
integration begins once the finite value of 𝜂𝜂 at ∞ has been 
determined. Adjust the estimated values 𝑛𝑛‴,𝑔𝑔″ and 𝜃𝜃′ to 
offer a better approximation to the solution by comparing the 
computed values for 𝑛𝑛′,𝑔𝑔 and 𝜃𝜃  at 𝜂𝜂 = 8 (say) with the 
specified boundary conditions 𝑛𝑛′(8) = 0, 𝑔𝑔(8) = 0 and  
𝜃𝜃(8) = 0. We use the fourth order Runge-Kutta technique 
with a step size of h = 0.01 to apply the series values for 
𝑛𝑛‴(0), 𝑔𝑔″(0), 𝜃𝜃′(0). The technique is continued until the 
findings have converged to the required degree of accuracy 
of 10−8.  
  Through this method the values of skin friction coefficients 
and Nusselt number for different parameters like 𝑀𝑀, 𝛽𝛽1, 𝛽𝛽2, 
𝐸𝐸1, 𝑅𝑅𝑅𝑅, 𝐸𝐸𝑐𝑐, 𝑃𝑃𝑐𝑐, 𝑆𝑆, 𝑄𝑄, 𝐵𝐵𝑐𝑐 and 𝛼𝛼1 is dragged and then ANN is 
used for comparison and as well as to plot the output. Table 
2 gives the comparison of 𝑛𝑛′(0) for rotation parameter in R-
K 4th order method which is performed in the MATLAB. 

Table 2. Comparision of  𝑛𝑛 ′(0) for various values of  𝜔𝜔. 
Variation 

of 𝝎𝝎 
Uddin 

 et al. [28] 
Mustafa  

et al. 
[29] 

Ahmed  
et al. 
[30] 

Present 
paper 

0 -1.1740 -1.1737 -1.1739 -1.1734 

1 -0.9485 -0.9483 -0.9484 -0.9488 

2 -3265 -3263 -3264 -3248 

-5 3.1939 3.1937 3.1937 3.5674 

10 12.7211 12.7206 12.7209 12.7642 

20 40.9059 40.9056 40.9057 40.89990 

5.2.1. Artificial Neural Network (MLP-NN) 

ANNs are built in the same way that human and animal 
brains are built. Basic scalar messages, simple processing 
components, a high degree of interconnection and adoptive 
interaction between units are the things which make them a 
type of multi-processor computer system [31]. Actually, 
ANN provides a reasonably quick and flexible way of 
modelling, so it is appropriate for rainfall-runoff prediction 
[32,33]. Layers of neurons make up an ANN.  One or more 
hidden layers of neurons connect the input layer of neurons 
to  the  output  layer  of  neurons. The  interconnecting  link 
between the neuron layers is made up of connection weights. 
This method changes its weights throughout the training 
phase to reduce the errors between the projected result and 
the actual output using the Back Propagation algorithm [34]. 
To get the best topology and weights, ANN is trained using 
experimental data and then evaluated with more 
experimental data whereas, bias refers to the weight that is 
provided directly to one neuron without being coupled to the 
prior neuron in specific circumstances. The most common 
type of ANN is the multilayer perceptron (MLP). It also has 
one or more hidden layers feed forward neural network. The 
sigmoid function was chosen as the activation function.  

𝑛𝑛(𝑠𝑠) = 1
1+𝑟𝑟−𝑠𝑠

 ,                                                                         (33)   

where, 𝑠𝑠𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑒𝑒𝑖𝑖, in which the term  𝑊𝑊𝑖𝑖 is related to 

weights and 𝑒𝑒𝑖𝑖 for input values. In the next part, we'll go 
through the ANN implementation in more detail as we go 
over the learning methods. 

5.2.2. Levenberg Marquardt Algorithm (LM-NN) 
Levenberg Marquardt is the first learning algorithm to be 
implemented. LM is a fast-converging training technique 
that has a lot of applications in neural network discipline 
[35]. It's a variant of the standard Newton algorithm for 
determining the optimum answer to a minimization issue 
[36]. 

Two-layered neural networks with specific variables and 
parameters are shown in Figure 2. Here, indication of 𝑃𝑃𝑛𝑛  is 
for input, 𝑊𝑊(𝑖𝑖,𝑗𝑗) for the first layer's connecting weight, 𝑉𝑉(𝑖𝑖.𝑗𝑗) 
for the second layer's connecting weight, and 𝑞𝑞𝑛𝑛 for the 
output. 

𝑎𝑎(𝑖𝑖) = �𝑊𝑊(𝑖𝑖,𝑗𝑗)𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,                                                                (34) 
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Figure 2. Neural network with two-layered hidden neuron. 

The second layer's net output from unit 𝑖𝑖 is as follows: 

𝑞𝑞(𝑖𝑖) = �𝑛𝑛�𝑎𝑎(ℎ)�𝑉𝑉(𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑖𝑖=1

.                                                      (35) 

The goal of ANN is to figure out how input and output pairs 
are connected. The hidden unit is named as ℎ , and the 
activation function is as 𝑛𝑛(). The Sigmoid function was 
chosen as the activation function. 

𝑛𝑛(𝑠𝑠) =
1

1 + 𝑒𝑒−𝑠𝑠
.  (36) 

The Gauss-Newton technique provides an update. 

𝛥𝛥𝑒𝑒 = [𝐽𝐽𝑇𝑇(𝑒𝑒)𝐽𝐽(𝑒𝑒)]−1𝐽𝐽𝑇𝑇(𝑒𝑒)𝑒𝑒(𝑒𝑒),  (37)    

while Levenberg Marquardt's to the Gauss-Newton 
technique is such that: 

𝛥𝛥𝑒𝑒 = [𝐽𝐽𝑇𝑇(𝑒𝑒)𝐽𝐽(𝑒𝑒) + 𝜇𝜇𝜇𝜇]−1𝐽𝐽𝑇𝑇(𝑒𝑒)𝑒𝑒(𝑒𝑒).  (38) 

When the scalar 𝜇𝜇 is 0, Eq. (38) is just Newton's 
technique; however, when the scalar 𝜇𝜇 is large, Eq. (33) 
becomes gradient descent with a short step size. The 
original description of Levenberg-Marquardt is explained 
in [37]. 
By incorporating information as input and calculating 
outputs, from different node activations and 
interconnection weights, this is how the output of ANN 
was calculated through the LM-NN method. The mean 
percentile error was computed after comparing the output 
to the experimental output. The error value was then 
transmitted backwards through the network and the 
weights at each node in each layer were adjusted 
accordingly. The method was then performed iteratively 
until the total error value fell below a predefined 
threshold. As shown in Figure 3, the eleven parameters 
(𝑀𝑀,𝛽𝛽1,𝛽𝛽2,𝐸𝐸1,𝑅𝑅𝑅𝑅,𝐸𝐸𝑐𝑐,𝑃𝑃𝑐𝑐,𝑆𝑆,𝑄𝑄,𝐵𝐵𝑐𝑐, and 𝛼𝛼1) that were obtained 
for the samples utilized in the research were used as input 
nodes, and three parameters (skin friction coefficients in 
xz and yz directions and Nusselt number) of these samples 
were employed as the ANN's output parameters. The 
method was then performed iteratively until the total error 
value fell below a predefined threshold. The numerical 
values acquired for all of the parameters in R-K 4th order 
method as shown in Tables 3, 4, and 5 were utilized to 
train the ANN in this research. Also, the following flow 
chart Figure 4, gives the sketch of how the output 
extraction is done through two methods. MPE value for 
this  rate of heat trnasfer is (0.0034). MPE means mean  

Figure 3. Schematic diagram of a multi-layer Artificial Neural 
Network (ANN). 

percentile error for the 𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2 is (0.9787) and for the 

𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2  is (0.9337). 

6. Results and discussion
Numerical consequences performed for skin friction along x 
and y directions and Nusselt number are illustrated in this 
section through MATLAB and then ANN method of 
Levenberg Marquardt is used to compare the results. Also, 
the graphs of this parameters are performed by using ANN 
method. In MATLAB the results are gained for the 
accompanying fixed parametric values: 𝑆𝑆 = 0.3, 𝑀𝑀 = 0.5, 
𝛽𝛽1 = 0.3, 𝛽𝛽2 = 0.3, 𝐸𝐸1 = 0.5, 𝑅𝑅𝑅𝑅 = 1.0, 𝐸𝐸𝑐𝑐 = 0.05, 𝑄𝑄 =
0.3, 𝛼𝛼 = 0.2, and 𝑄𝑄𝑏𝑏 = 0.2. Actually, LM-NN is divided into 
three phases: training, validation, and testing. The activation 
function of artificial neurons was a sigmoid function and 
training was completed with a predetermined 176 number of 
epochs. The ANN model for the skin friction coefficients and 
Nusselt number was trained, validated and tested using a 
total of 44 numerical results. The training set consisted of 34 
data sets, while the validation set consisted of 7 data sets and 
the balance of the data was utilised to evaluate the model's 
findings. Figures 5 and 6 show the skin friction coefficient 
of 𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 and 𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2 whereas Figure 7 explores the 

Nusselt number for the proposed ANN model's training, 
validation, and test sets, respectively. This section shows the 
numerical results of skin friction coefficients (𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 and 
𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2), as well as the Nusselt number (𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥
−1/2). 

For all data sets, the model's MPE values were 0.9787, 
0.9337, and 0.0034, respectively. Because they replicate 
complex relationships between input and output variables, 
the ANN models seem to have been effectively trained. 
Furthermore, the projected skin friction coefficients and
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Figure 4. Flow chart representation for the extraction of outputs. 

Nusselt number values from the ANN model are compared 
to numerically obtained skin friction coefficients and Nusselt 
number values for the training, validation, and test sets, as 
shown in Figures 5, 6, and 7 respectively. The ANN model's 
conclusions are quite similar to the numerical results. So far, 
our study has proven that the ANN can accurately simulate 
skin friction coefficients and the Nusselt number. The 
numerical findings and the ANN (LM-NN) model's 
conclusions are very comparable.  

From the Figure 8, it is noticed that for the higher values 
of Eckert number and radiation parameters, the skin friction 
coefficient 𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 will decline automatically. Similarly, 
when the Brinkman number and temperature ratio  parameter 
intensify, 𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 decreases, as   seen  in Figure 9. It is 
evident that from the Figure 10, that skin friction coefficient  
𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 declines for the higher values of the parameters 𝑄𝑄 
and 𝑃𝑃𝑐𝑐. Figure 11 shows the decreasing tendency of 
𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 for increasing parameters Brinkman number and 
temperature ratio parameter. Also, 𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥

1/2 declines for the 
higher values of the parameters 𝑄𝑄 and 𝑃𝑃𝑐𝑐 which is illustrated 
in the Figure 12.  

Figure 13 demonstrates that for the higher values of electric 
field and unsteady parameters is observed to be inclined for 
the  rate  of   heat  transfer 𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥

−1/2.  For  the  parameter 
values of Deborah number and magnetic field on Nusselt 
number is explored in the Figure 14. But it is seen from the 
Figure 13 that for those parameters Nusselt number 
𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥

−1/2 declines as those parameters increases. 
      From the MATLAB, Figures 15-18 is extracted on 
entropy generation parameter. Figure 15 shows how the 
entropy generation intensifies as the magnetic field strength 
increases. Physically,  increasing    the   Lorentz    force   by 
increasing the magnetic parameter creates greater friction, 
which increases the rate of entropy generation. As seen in 
Figure 16, the entropy production rate reduces as the electric 
field intensity increases. Figure 17 shows that the entropy 
production rate increases as the Brinkman number increases. 
Because viscous effects have gotten greater with the growth 
in Brinkman numbers, this condition in the entropy 
generating  rate  outcomes  has arisen. The entropy 
generation rises for the greater values of the temperature 
ratio parameter is observed from Figure 18. 
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Table 3. The results of skin friction coefficient in xz-direction (𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1
2) for variation of non-dimensional parameters in NM 

and ANN methods. 

M  𝜷𝜷𝟏𝟏  𝜷𝜷𝟐𝟐  E1  Rd  Ec  Pr  S  Q  Br  𝜶𝜶𝟏𝟏  
               1/2

r xCf Re  
       NM                      ANN 

0.4 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.180954 0.175389505 
1 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.126905 0.303769159 
1.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.412864 0.462084033 
2 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.656983 0.638455915 
0.5 0.5 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.589509 0.561950011 
0.5 0.7 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.828792 0.818177984 
0.5 0.9 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.960801 0.970471947 
0.5 1 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 1.011441 1.03990803 
0.5 0.3 0.5 0.5 1 0.05 21 0.3 0.5 1 0.5 0.092991 0.097209999 
0.5 0.3 0.7 0.5 1 0.05 21 0.3 0.5 1 0.5 0.005273 0.021628322 
0.5 0.3 0.9 0.5 1 0.05 21 0.3 0.5 1 0.5 0.10714 0.047722595 
0.5 0.3 1 0.5 1 0.05 21 0.3 0.5 1 0.5 0.15458 0.083779202 
0.5 0.3 0.3 1 1 0.05 21 0.3 0.5 1 0.5 0.503506 0.474899651 
0.5 0.3 0.3 1.5 1 0.05 21 0.3 0.5 1 0.5 0.791431 0.778354012 
0.5 0.3 0.3 2 1 0.05 21 0.3 0.5 1 0.5 1.058272 1.069551658 
0.5 0.3 0.3 2.5 1 0.05 21 0.3 0.5 1 0.5 1.310675 1.361511662 
0.5 0.3 0.3 0.5 1.01 0.05 21 0.3 0.5 1 0.5 0.180955 0.181336731 
0.5 0.3 0.3 0.5 1.02 0.05 21 0.3 0.5 1 0.5 0.180955 0.174620691 
0.5 0.3 0.3 0.5 1.03 0.05 21 0.3 0.5 1 0.5 0.180955 0.173013873 
0.5 0.3 0.3 0.5 1.04 0.05 21 0.3 0.5 1 0.5 0.180952 0.177641111 
0.5 0.3 0.3 0.5 1 0.06 21 0.3 0.5 1 0.5 0.180955 0.062545074 
0.5 0.3 0.3 0.5 1 0.07 21 0.3 0.5 1 0.5 0.180955 0.060015182 
0.5 0.3 0.3 0.5 1 0.075 21 0.3 0.5 1 0.5 0.180955 0.108829085 
0.5 0.3 0.3 0.5 1 0.08 21 0.3 0.5 1 0.5 0.180926 0.195774692 
0.5 0.3 0.3 0.5 1 0.05 22 0.3 0.5 1 0.5 0.180955 0.17040481 
0.5 0.3 0.3 0.5 1 0.05 23 0.3 0.5 1 0.5 0.180955 0.153384096 
0.5 0.3 0.3 0.5 1 0.05 24 0.3 0.5 1 0.5 0.180957 0.142748524 
0.5 0.3 0.3 0.5 1 0.05 25 0.3 0.5 1 0.5 0.180955 0.139546792 
0.5 0.3 0.3 0.5 1 0.05 21 0.4 0.5 1 0.5 0.059617 0.071292267 
0.5 0.3 0.3 0.5 1 0.05 21 0.5 0.5 1 0.5 0.061644 0.065388207 
0.5 0.3 0.3 0.5 1 0.05 21 0.6 0.5 1 0.5 0.182646 0.188357507 
0.5 0.3 0.3 0.5 1 0.05 21 0.7 0.5 1 0.5 0.879077 0.462949872 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.6 1 0.5 0.180955 0.177856431 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.7 1 0.5 0.180954 0.173303424 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.8 1 0.5 0.180955 0.173649336 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.9 1 0.5 0.180951 0.176309007 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 2 0.5 0.180954 0.157172958 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 3 0.5 0.180955 0.140630514 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 4 0.5 0.180955 0.137576406 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 5 0.5 0.180956 0.140571371 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 1 0.180954 0.166158253 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 1.5 0.180955 0.151442347 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 2 0.180956 0.148057221 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 2.5 0.180957 0.152687531 
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Table 4. The results of skin friction coefficient in yz-direction ( 1/ 2Rer xCg ) for variation of non-dimensional parameters in NM and ANN 
methods. 

M 
 

𝜷𝜷𝟏𝟏 
 

𝜷𝜷𝟐𝟐 
 

E1 
 

Rd 
 

Ec 
 

Pr 
 

S 
 

Q 
 

Br 
 

𝜶𝜶𝟏𝟏 
 

1/2
r xCg Re  

NM ANN 
0.4 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 1.327998 1.340937 
1 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.662449 0.638885 
1.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.17261 0.254505 
2 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.23152 0.223987 
0.5 0.5 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.141119 0.487026 
0.5 0.7 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 0.663203 0.670841 
0.5 0.9 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 1.006453 1.007673 
0.5 1 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 1.1494 1.155552 
0.5 0.3 0.5 0.5 1 0.05 21 0.3 0.5 1 0.5 1.04852 1.055171 
0.5 0.3 0.7 0.5 1 0.05 21 0.3 0.5 1 0.5 0.865893 0.872098 
0.5 0.3 0.9 0.5 1 0.05 21 0.3 0.5 1 0.5 0.676538 0.683434 
0.5 0.3 1 0.5 1 0.05 21 0.3 0.5 1 0.5 0.58649 0.588191 
0.5 0.3 0.3 1 1 0.05 21 0.3 0.5 1 0.5 1.586397 1.56276 
0.5 0.3 0.3 1.5 1 0.05 21 0.3 0.5 1 0.5 1.900585 1.880991 
0.5 0.3 0.3 2 1 0.05 21 0.3 0.5 1 0.5 2.17816 2.168212 
0.5 0.3 0.3 2.5 1 0.05 21 0.3 0.5 1 0.5 2.430464 2.417294 
0.5 0.3 0.3 0.5 1.01 0.05 21 0.3 0.5 1 0.5 1.212865 1.226756 
0.5 0.3 0.3 0.5 1.02 0.05 21 0.3 0.5 1 0.5 1.212864 1.206707 
0.5 0.3 0.3 0.5 1.03 0.05 21 0.3 0.5 1 0.5 1.212865 1.189762 
0.5 0.3 0.3 0.5 1.04 0.05 21 0.3 0.5 1 0.5 1.212862 1.197756 
0.5 0.3 0.3 0.5 1 0.06 21 0.3 0.5 1 0.5 1.212865 1.224325 
0.5 0.3 0.3 0.5 1 0.07 21 0.3 0.5 1 0.5 1.212867 1.213953 
0.5 0.3 0.3 0.5 1 0.075 21 0.3 0.5 1 0.5 1.204971 1.212355 
0.5 0.3 0.3 0.5 1 0.08 21 0.3 0.5 1 0.5 1.204972 1.21708 
0.5 0.3 0.3 0.5 1 0.05 22 0.3 0.5 1 0.5 1.212865 1.212476 
0.5 0.3 0.3 0.5 1 0.05 23 0.3 0.5 1 0.5 1.212863 1.213684 
0.5 0.3 0.3 0.5 1 0.05 24 0.3 0.5 1 0.5 1.212866 1.218493 
0.5 0.3 0.3 0.5 1 0.05 25 0.3 0.5 1 0.5 1.212865 1.217806 
0.5 0.3 0.3 0.5 1 0.05 21 0.4 0.5 1 0.5 1.021271 1.081952 
0.5 0.3 0.3 0.5 1 0.05 21 0.5 0.5 1 0.5 0.828563 0.916587 
0.5 0.3 0.3 0.5 1 0.05 21 0.6 0.5 1 0.5 0.634841 0.61765 
0.5 0.3 0.3 0.5 1 0.05 21 0.7 0.5 1 0.5 0.256313 0.254465 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.6 1 0.5 1.212865 1.221281 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.7 1 0.5 1.212866 1.209103 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.8 1 0.5 1.212867 1.210062 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.9 1 0.5 1.21286 1.215866 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 2 0.5 1.212864 1.207685 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 3 0.5 1.212865 1.210535 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 4 0.5 1.212866 1.207033 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 5 0.5 1.212866 1.213101 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 1 1.212864 1.229174 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 1.5 1.212865 1.218506 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 2 1.2128656 1.217304 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 2.5 1.212868 1.226123 

 
 

 
 



10 A. Reddy Divya, and P. Bala Anki Reddy./ Scientia Iranica (2025) 32(3):7291 

 

 
 

Table. 5 The results of heat transfer coefficient (Nusselt number 1/ 2Rex xNu −  ) for variation of non-dimensional parameters in NM and ANN 
methods. 

M 
 

𝜷𝜷𝟏𝟏 
 

𝜷𝜷𝟐𝟐 
 

E1 
 

Rd 
 

Ec 
 

Pr 
 

S 
 

Q 
 

Br 
 

𝜶𝜶𝟏𝟏  
 

-1/2
x xNu Re  

NM ANN 
0.4 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 17.000741 16.82814 
1 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 16.567447 16.48499 
1.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 16.092525 16.08554 
2 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 15.60204 15.59453 
0.5 0.5 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 16.462047 16.34181 
0.5 0.7 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 16.083963 16.03002 
0.5 0.9 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 15.889186 15.85824 
0.5 1 0.3 0.5 1 0.05 21 0.3 0.5 1 0.5 15.798502 15.76673 
0.5 0.3 0.5 0.5 1 0.05 21 0.3 0.5 1 0.5 16.591513 16.56418 
0.5 0.3 0.7 0.5 1 0.05 21 0.3 0.5 1 0.5 16.597923 16.53073 
0.5 0.3 0.9 0.5 1 0.05 21 0.3 0.5 1 0.5 16.590622 16.59721 
0.5 0.3 1 0.5 1 0.05 21 0.3 0.5 1 0.5 16.584462 16.57361 
0.5 0.3 0.3 1 1 0.05 21 0.3 0.5 1 0.5 16.348064 16.33492 
0.5 0.3 0.3 1.5 1 0.05 21 0.3 0.5 1 0.5 15.860596 15.79266 
0.5 0.3 0.3 2 1 0.05 21 0.3 0.5 1 0.5 15.17239 15.1144 
0.5 0.3 0.3 2.5 1 0.05 21 0.3 0.5 1 0.5 14.308991 14.30859 
0.5 0.3 0.3 0.5 1.01 0.05 21 0.3 0.5 1 0.5 16.634018 16.71902 
0.5 0.3 0.3 0.5 1.02 0.05 21 0.3 0.5 1 0.5 16.700332 16.69104 
0.5 0.3 0.3 0.5 1.03 0.05 21 0.3 0.5 1 0.5 16.766395 16.72045 
0.5 0.3 0.3 0.5 1.04 0.05 21 0.3 0.5 1 0.5 16.832208 16.81933 
0.5 0.3 0.3 0.5 1 0.06 21 0.3 0.5 1 0.5 16.350909 16.41846 
0.5 0.3 0.3 0.5 1 0.07 21 0.3 0.5 1 0.5 16.133422 16.13728 
0.5 0.3 0.3 0.5 1 0.075 21 0.3 0.5 1 0.5 16.024311 16.01738 
0.5 0.3 0.3 0.5 1 0.08 21 0.3 0.5 1 0.5 15.914968 15.9082 
0.5 0.3 0.3 0.5 1 0.05 22 0.3 0.5 1 0.5 16.947166 16.94725 
0.5 0.3 0.3 0.5 1 0.05 23 0.3 0.5 1 0.5 17.317468 17.17922 
0.5 0.3 0.3 0.5 1 0.05 24 0.3 0.5 1 0.5 17.678965 17.58596 
0.5 0.3 0.3 0.5 1 0.05 25 0.3 0.5 1 0.5 18.032213 18.03619 
0.5 0.3 0.3 0.5 1 0.05 21 0.4 0.5 1 0.5 16.725507 16.71665 
0.5 0.3 0.3 0.5 1 0.05 21 0.5 0.5 1 0.5 16.863043 16.69781 
0.5 0.3 0.3 0.5 1 0.05 21 0.6 0.5 1 0.5 16.980051 16.82854 
0.5 0.3 0.3 0.5 1 0.05 21 0.7 0.5 1 0.5 17.075629 17.06855 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.6 1 0.5 16.53894 16.63236 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.7 1 0.5 16.510421 16.50309 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.8 1 0.5 16.481884 16.43332 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.9 1 0.5 16.453333 16.44709 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 2 0.5 16.567447 16.57789 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 3 0.5 16.567447 16.50601 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 4 0.5 16.567447 16.56003 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 5 0.5 16.567447 16.54298 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 1 16.567447 16.82961 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 1.5 16.567447 16.74716 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 2 16.567447 16.56055 
0.5 0.3 0.3 0.5 1 0.05 21 0.3 0.5 1 2.5 16.567447 16.35167 
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Figure 5. Graphical representation of the skin friction coefficient (𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2). 

 

Figure 6. Graphical representation of the skin friction coefficient (𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2).     
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Figure 7. Graphical representation of the Nusselt number(𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥
−1/2). 

 

Figure 8. Sway of 𝐸𝐸𝑐𝑐 and Rd on 𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2 

7. Main findings 
The numerical modelling and ANN(LM-NN) model results 
are quite close to the numerical findings. As a result of the 
present study's results, the suggested ANN model is 
successful for EMHD boundary layer slip flow over a 
rotating disk embedded in a porous medium with Oldroyd- 

Figure 9. Sway of 𝐵𝐵𝑐𝑐 and 𝛼𝛼1 on  𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2. 

B fluid. Also, PDEs are converted to ODEs using the 
relevant conversions. The reference set is generated using the 
R-K 4th order approach with the shooting methodology and 
then generated by using ANN(LM-NN) method for varying 
relevant parameters values. The major output drawn from 
this study can be summarized as below: 
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Figure 10. Sway of 𝑄𝑄 and 𝑃𝑃𝑐𝑐 on  𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2. 

 

Figure 11. Sway of 𝐵𝐵𝑐𝑐 and 𝛼𝛼1 on 𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2. 

Figure 12. Sway of 𝑄𝑄 and 𝑃𝑃𝑐𝑐  on 𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2.  

 

Figure 13. Sway of 𝐸𝐸1 and 𝑆𝑆 on 𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥
−1/2.   

 

Figure 14. Sway of 𝛽𝛽1 and 𝑀𝑀 on 𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥
−1/2. 

 
Figure 15. Sway of 𝑀𝑀 on 𝑁𝑁𝐺𝐺 .   



14 A. Reddy Divya, and P. Bala Anki Reddy./ Scientia Iranica (2025) 32(3):7291 

Figure 16. Sway of 𝐸𝐸1 on 𝑁𝑁𝐺𝐺 .   

Figure 17. Sway of 𝐵𝐵𝑐𝑐 on 𝑁𝑁𝐺𝐺 . 

Figure 18. Sway of 𝛼𝛼1 on 𝑁𝑁𝐺𝐺. 

• Skin friction coefficients decrease for the higher values
of Eckert number and radiation parameters;

• The rate of heat transfer declines for the rise in magnetic
and Deborah number parameters;

• For the rise in the parameters like Brinkman number,
Prandtl number and temperature ratio parameter, both
the skin frictions will decline;

• Heat transfer increases with increasing in electric and
unsteady parameters;

• Entropy generation rises for magnetic field, Brinkman
number and temperature ratio parameter;

• Increase in the electric field parameter, entropy
generation declines.

This current therapeutic model will be very interesting to 
clinicians for the treatment of anemia as well as in the 
treatment of microbial infections etc. Since we considered 
tantalum and cobalt as nanoparticles in which tantalum is 
utilized in bone implants and iodinated agents for blood 
imaging because of its longer circulation time. Cobalt is a 
component of vitamin B12, which stimulates red blood cell 
formation. 

List of symbols 

𝑐𝑐,𝜑𝜑, 𝑧𝑧 Cylindrical coordinates 

𝑢𝑢, 𝑣𝑣,𝜕𝜕 Velocity components 

𝑛𝑛 Axial velocity field 

𝑛𝑛 ′ Radial velocity field 

𝑔𝑔 Azimuthal velocity field 

𝑇𝑇 Temperature of the fluid 

𝑆𝑆 Measure of unsteadiness 

𝑀𝑀 Magnetic field parameter 

𝐵𝐵0 Uniform magnetic field 

𝑇𝑇𝑠𝑠 Surface temperature 

𝑇𝑇0 Origin temperature 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  Constant reference temperature 

𝑅𝑅𝑒𝑒 Local Reynolds number 

𝐸𝐸𝑐𝑐  Eckert number 

𝑃𝑃𝑐𝑐 Prandtl number 

𝑅𝑅𝑅𝑅 Thermal radiation 
𝑁𝑁𝐺𝐺 Local entropy generation 

𝐶𝐶𝑛𝑛𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2 Skin friction co-efficient of 𝑛𝑛  

velocity 

𝐶𝐶𝑔𝑔𝑟𝑟 𝑅𝑅𝑒𝑒𝑥𝑥
1/2 Skin friction co-efficient of 𝑔𝑔 

velocity 

𝑁𝑁𝑢𝑢𝑥𝑥 𝑅𝑅𝑒𝑒𝑥𝑥
−1/2 Local Nusselt number 
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𝐵𝐵𝑒𝑒 Bejan number 

𝑁𝑁1,𝑁𝑁2,𝑁𝑁3,𝑁𝑁4,𝑁𝑁5 Hybrid nanofluid constants 

𝑘𝑘 Thermal conductivity 

𝑄𝑄𝑇𝑇∗  Thermal-dependent heat source 
coefficient 

𝑄𝑄𝐸𝐸∗ Exponential space-dependent heat 
source coefficient 

n Exponential index 

𝑐𝑐 Stretching rate 

𝑄𝑄 Exponential based heat source 
parameter 

𝑄𝑄𝑏𝑏  Thermal space dependent heat source 
parameter 

Greek symbols 

𝜌𝜌 Fluid density 

𝜐𝜐  kinematic viscosity 

𝜇𝜇 Dynamic viscosity 

𝜎𝜎 Electric conductivity 

𝜂𝜂 Dimensionless variable 

𝑘𝑘∗  Mean absorption co-efficient 

𝜎𝜎∗  Stefan Boltzmann constant 

𝜃𝜃  Dimensionless temperature 

𝜙𝜙𝑇𝑇𝑇𝑇  Volume fraction of tantalum 

𝜙𝜙𝐶𝐶𝐶𝐶  Volume fraction of Cobalt  

𝛺𝛺  Angular velocity 

𝜆𝜆1  Relaxation time parameter 

𝛽𝛽  Porosity parameter 

𝛽𝛽1, 𝛽𝛽2 Deborah numbers 

𝜃𝜃𝑣𝑣 Temperature ratio parameter 

𝛼𝛼1  Temperature difference  parameter       

𝜔𝜔  Rotation parameter 

Subscripts 

𝑛𝑛  Fluid 

𝑛𝑛𝑛𝑛  Nanofluid 

ℎ𝑛𝑛𝑛𝑛  Hybrid nanofluid 
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