Entropy generation on Darcy-Forchheimer flow of copper-aluminium oxide/water hybrid nanofluid over a rotating disk: Semi-analytical and numerical approaches

Document Type : Article

Authors

Department of Mathematics, S.A.S., Vellore Institute of Technology (VIT), Vellore-632014, India

Abstract

The proficiency of hybrid nanoparticles in increasing heat transfer has impressed many researchers to further analyze the working of those fluids. In the current study, the impact of entropy generation on EMHD hybrid nanofluid (copper-alumina) flow over a rotating disk in the presence of the porous medium, Darcy‐Forchheimer, heat generation, viscous dissipation, and thermal radiation. By applying the self-similarity variables, the partial differential equations are converted into ordinary differential equations. After that, the dimensionless equations are numerically solved by using the Runge-Kutta technique, and also the comparison is done between the numerical technique (R-K method) and the homotopy perturbation method (HPM) where HPM yields a more effective and dependable conclusion. To highlight their physical significance, unique characteristic graphs are shown for the profiles of velocity, temperature, and entropy generation, along with a suitable explanation. The hybrid nanofluid velocity decreases with larger values of the magnetic parameter, but the velocity profile increases with the higher electric field. It is observed that both skin friction and nusselt number are increasing function of magnetic parameter and electric field parameter.

Keywords

Main Subjects


References:
1. Shevchuk, I.V. "Convective heat and mass transfer in rotating disk systems", Lect. Notes Appl. Comput. Mech., 45 LNACM, pp. 1-9 (2009).
2. Choi, S. and Eastman, J. "Enhancing thermal conductivity of  fluids with nanoparticles", No. ANL/MSD/CP-84938; CONF-951135-29 (1995).
3. Salahuddin, T., Awais, M., Khan, M., et al. "Analysis of transport phenomenon in cross  fluid using cattaneochristov theory for heat and mass fluxes with variable viscosity", Int. Commun. Heat Mass Transf., 129(October), p. 105664 (2021).
4. Rana, P. and Gupta, G. "Heat transfer optimization of Marangoni convective  flow of nanofluid over an infinite disk with Stefan blowing and slip effects using Taguchi method", Int. Commun. Heat Mass Transf., 130, p. 105822 (2022).
5. Ayub, A., Sabir, Z., Shah, S., et al. "Effects of homogeneous-heterogeneous and Lorentz forces on 3-D radiative magnetized cross nanofluid using two rotating disks", Int. Commun. Heat Mass Transf., 130, p. 105778 (2022).
6. Reddy, S.R.R., Bala Anki Reddy, P., and Bhattacharyya, K. "Effect of nonlinear thermal radiation on 3D magneto slip  flow of Eyring-Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy", Adv. Powder Technol., 30(12), pp. 3203-3213 (2019).
7. Sadiq, M.A., Haider, F., Hayat, T., et al. "Partial slip in Darcy-Forchheimer carbon nanotubes flow by rotating disk", Int. Commun. Heat Mass Transf., 116, p. 104641 (2020).
8. Nayak, M.K., Mehmood, R., Makinde, O.D., et al. "Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk", J. Cent. South Univ., 26(5), pp. 1146- 1160 (2019).
9. Khan, U., Bilal, S., Zaib, A., et al. "Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold-blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation", Numer. Methods Partial Differ. Equ., 38(3), pp. 308- 328 (2022).
10. Waini, I., Ishak, A., and Pop, I. "Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis", Eur. J. Mech. - B/Fluids, 94, pp. 121-127 (2022).
11. Sidik, N.A.C., Adamu, I.M., Jamil, M.M., et al. "Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review", Elsevier, 78, pp. 68-79 (2016).
12. Reddy, P.B.A. "Biomedical aspects of entropy generation on electromagnetohydrodynamic blood flow of hybrid nanofluid with nonlinear thermal radiation and non-uniform heat source/sink", Eur. Phys. J. Plus, 135(10), pp. 1-30 (2020).
13. Jakeer, S., Reddy, P.B.A., Mansour, M.A., et al. "Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid", Eur. Phys. J. Plus, 137(1), pp. 1- 16 (2022).
14. Divya, A. and Reddy, P.B.A. Electromagnetohydrodynamic unsteady flow with entropy generation and hall current of hybrid nanofluid over a rotating disk: An application in hyperthermia therapeutic aspects", Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(13), pp. 7511- 7528 (2022).
15. Ouyang, C., Akhtar, R., Raja, et al. "Numerical treatment with Lobatto IIIA technique for radiative flow of MHD hybrid nanofluid (Al2O3-Cu/H2O) over a convectively heated stretchable rotating disk with velocity slip effects", AIP Adv., 10(5), p. 055122 (2020).
16. Hafeez, A., Khan, M., and Ahmed, J. "Flow ofmagnetized Oldroyd-B nanofluid over a rotating disk", Appl. Nanosci., 10(12), pp. 5135-5147 (2020).
17. Nayak, M.K., Mehmood, R., Makinde, O.D., et al. "Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk", J. Cent. South Univ., 26(5), pp. 1146- 1160 (2019).
18. Mustafa, M. "MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model", Int. J. Heat Mass Transf., 108, pp. 1910-1916 (2017).
19. Iqbal, M.S., Mustafa, I., Riaz, I., et al. "Influence of carbon nanotubes on heat transfer in MHD nanofluid flow over a stretchable rotating disk: A numerical study", Heat Transf., 50(1), pp. 619-637 (2021).
20. Makinde, O.D., Mahanthesh, B., Gireesha, B.J., et al. "MHD nanofluid flow apst a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles", Defect Diffus. Forum, 384, pp. 69-79 (2018).
21. Shah, Z., Dawar, A., Kumam, P., et al. "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci. 2019, 9(8), p. 1533 (2019).
22. Sangapatnam, S., Ketineni, S., Chamkha, A.J., et al. "Numerical investigation of non-fourier flux theory with chemical action on maxwell radiating nanoliquid: A biomedical application", Lect. Notes Mech. Eng., pp. 793-810 (2021).
23. Yuen, C. and Liu, Q. "A magnetic-field enriched surface-enhanced resonance Raman spectroscopy strategy towards the early diagnosis of malaria", Biology and Medicine IX, 8234, pp. 98-103(2012).
24. Bejan, A. "A study of entropy generation in fundamental convective heat transfer", J. Heat Transfer, 101(4), pp. 718-725 (1979).
25. Bejan, A. "Second-law analysis in heat transfer and thermal design", Adv. Heat Transf., 15(C), pp. 1-58 (1982).
26. Suriya Uma Devi, S. and Mabood, F. "Entropy anatomization on marangoni Maxwell fluid over a rotating disk with nonlinear radiative flux and Arrhenius activation energy", Int. Commun. Heat Mass Transf., 118, p. 104857 (2020).
27. Khan, N., Riaz, I., Hashmi, M.S., et al. "Aspects of chemical entropy generation in flow of casson nanofluid between radiative stretching disks", Entropy 2020, 22(5), p. 495 (2020).
28. Aziz, A. and Shams, M. "Entropy generation in MHD Maxwell nanofluid flow with variable thermal conductivity, thermal radiation, slip conditions, and heat source", AIP Adv., 10(1), p. 015038 (2020).
29. Jakeer, S. and Bala Anki Reddy, P. "Entropy generation on EMHD stagnation point flow of hybrid nanofluid over a stretching sheet: Homotopy perturbation solution", Phys. Scr., 95(12), p. 125203 (2020).
30. Jakeer, S., Bala Anki Reddy, P., Rashad, A.M., et al. "Impact of heated obstacle position on magnetohybrid nanofluid  flow in a lid-driven porous cavity with Cattaneo-Christov heat flux pattern", Alexandria Eng. J., 60(1), pp. 821-835 (2021).
31. Kasaeian, A., Azarian, R.D., Mahian, O., et al. "Nanofluid flow and heat transfer in porous media: A review of the latest developments", Int. J. Heat Mass Transf., 107, pp. 778-791 (2017).
32. Khan, M.I., Waqas, H., Khan, S.U., et al. "Slip flow of micropolar nanofluid over a porous rotating disk with motile microorganisms, nonlinear thermal radiation and activation energy", Int. Commun. Heat Mass Transf., 122, p. 105161 (2021).
33. Muskat, M. and Wyckoff, R., The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill Book Company (1946).
34. Khan, M.I., Alzahrani, F., Hobiny, A., et al. "Fully developed second order velocity slip darcy-forchheimer flow by a variable thicked surface of disk with entropy generation", Int. Commun. Heat Mass Transf., 117, p. 104778 (2020).
35. Shaw, S., Dogonchi, A.S., Nayak, M.K., et al. "Impact of entropy generation and nonlinear thermal radiation on darcy-forchheimer  flow of MnFe2O4-casson/water nanofluid due to a rotating disk: Application to brain dynamics", Arab. J. Sci. Eng., 45(7), pp. 5471-5490 (2020).
36. Sadiq, M.A., Haider, F., Hayat, T., et al. "Partial slip in Darcy-Forchheimer carbon nanotubes flow by rotating disk", Int. Commun. Heat Mass Transf., 116, p. 104641 (2020).
37. Hayat, T., Qayyum, S., Imtiaz, M., et al. "Radiative flow due to stretchable rotating disk with variable thickness", Results Phys., 7, pp. 156-165 (2017).
38. Jakeer, S. and Reddy, P.B.A. "Entropy generation on the variable magnetic field and magnetohydrodynamic stagnation point flow of eyring-powell hybrid dusty nanofluid: Solar thermal application", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., p. 095440622110724 (2022).
39. Nayak, M.K., Patra, A., Shaw, S., et al. "Entropy optimized Darcy-Forchheimer slip flow of Fe3O4-CH2OH2 nanofluid past a stretching/shrinking rotating disk", Heat Transf., 50(3), pp. 2454-2487 (2021).
40. Ramasekhar, G. and Reddy, P.B.A. "Entropy generation on EMHD Darcy-Forchheimer flow of carreau hybrid nanofluid over a permeable rotating disk with radiation and heat generation: Homotopy perturbation solution", Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(4), pp. 1179-1191 (2023).
41. Rashad, A.M., Chamkha, A.J., Ismael, M., et al. "Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation", J. Heat Transfer, 140(7), 072502 (2018).