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Abstract. The pro�ciency of hybrid nanoparticles in increasing heat transfer has
impressed many researchers to analyze the working of those uids further. The current work
studies the impact of entropy generation on electromagnetohydrodynamic (EMHD) hybrid
nanouid (copper-aluminum oxide) ow over a rotating disk in the presence of the porous
medium, Darcy-Forchheimer, heat generation, viscous dissipation, and thermal radiation.
By applying the self-similarity variables, the partial di�erential equations are converted into
ordinary di�erential equations. After that, the dimensionless equations are numerically
solved using the Runge-Kutta (R-K) technique, and the comparison is made between
the numerical technique (R-K method) and the Homotopy Perturbation Method (HPM),
where HPM yields a more e�ective and dependable conclusion. To highlight their physical
signi�cance, unique characteristic graphs are shown for the pro�les of velocity, temperature,
entropy generation, and Bejan number, along with a suitable explanation. The hybrid
nanouid velocity decreases with larger values of the magnetic parameter, but the velocity
pro�le increases with the higher electric �eld. The �ndings are novel and innovative, with
several modern industrial applications, and the results are in excellent concurrence with
the relevant literature. Applications of the current research are refrigeration, electronics,
heat exchangers, and lubricants.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

The rotating disk is a well-known geometry for study-
ing various uids because of its simplicity, and it stands
as a classical uid dynamics problem. Theoretically
and practically, rotating disk circulation is advanta-
geous. It is due to its numerous uses in viscometers,
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biomechanics, material handling engineering, and air
cleaning equipment that incorporate medical equip-
ment, oceanography, and other areas. Turning ows
of electrically demanded uids are used in computer
storage devices and various other technological applica-
tions. Processes for crystal development and viscome-
ters, as an example. Disk-shaped elements are used
in many engineering processes, and the heat transfer
issue over a revolving disk has been investigated by
Shevchuk [1]. Biofuel generation, gas and aquatic
turbines, and generators are a few applications for
rotating disks in the automotive and energy sectors.

Nanouids have a lengthy history of attracting the
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attention of researchers from numerous �elds of modern
technology. The term \nanouid" was developed by
Choi and Eastman [2]. Researchers have been inves-
tigating a huge variety of advantages communicated
to the heat transfer properties of nanouids under the
e�ect of a permeable medium in various geometries
and motion scenarios over the past years. When
suspended ultra�ne nanoparticles (less than 100 nm)
are present, this creation consists of a technology that
enhances the thermal e�ciency and convective heat
transfer of base uids such as ethylene, hydrology,
and petroleum. The phenomenal aspect of this re-
sult motivated popular scientists to investigate the
circulation and heat transfer of di�erent nanouids
across various surfaces under multiple conditions to
satisfy today's demands [3{5]. Several researchers have
worked on the nanouid models; see the references [6{
9]. The concept of nanouid has been expanded such
that two or more nanoparticles may be dispersed into
the base uid at the same time. This new concept
was given the term \hybrid nanouid." Because of
the enormous shift that this technology has brought
about in the way that thermal and cooling systems
are developed, hybrid nanouids are being used to
signal that there will likely be an improvement in the
thermal performance of working uids. It has been
shown that increasing the number of di�erent kinds of
nanostructures in a uid leads to an improvement in the
uid's ability to transmit heat. Numerous applications
make use of hybrid nanouids, including solar water
heating, domestic refrigerators, heat exchangers, and
converters. One example of such an application is the
braking uid in a car [10{14].

A magnetic �eld may be used to regulate free
convection, and the magnetohydrodynamic (MHD)
model is one of the most frequently used methods.
MHD applications in revolving disk ow problems in
research and technological innovation include weather
forecasting and atomic power plants. The ow and
heat transfer caused by rotating disks �nd usage in
medical tools, aircraft engineering, and food processing
technologies. Several researchers have used MHD
nanouid in theoretical and experimental studies [15{
19] to investigate the rotating disk ow problem.
In space technology, thermal radiation signi�cantly
impacts ow and heat transmission. High temperature
and radiation-based technical methods are unquestion-
ably important, and their implications must not be
neglected. The e�ects of radiation on convective MHD
ow problems improve electrical power generation, so-
lar power technologies, and other manufacturing �elds.
As a result of the e�ects it has on application domains
where thermal radiation and MHD are concerned,
numerous researchers have expressed an interest in
studying it. Many researchers [20{22] have continued
their studies in adjacent �elds. However, the electro-

magnetohydrodynamic (EMHD) e�ect is essential in
theoretical and experimental studies in various �elds,
including biological and medical research, cardiology,
skin problems, tumor and cancer treatment, radiofre-
quency ablation (RFA) [23], etc.

The signi�cant response from the industrial fronts
over heat transfer increases due to entropy formation
prompted entropy generation. Entropy generation
appears to be extraordinary in complex systems such
as solid-state physics, magnetic refrigeration, and eco-
nomic analysis of production systems, biochemistry,
and biological systems [24]. It's important to keep
in mind that the aim of the irreversibility process is
intertwined with various thermal systems. Viscous
dissipation, magnetic �elds, Joule heating, heat and
mass transport, and other techniques are all described
using the idea of irreversibility. Many researchers
employed the most e�cient and reliable second rule
of thermodynamics to enhance such irreversibility pro-
cedures. Several researchers have investigated entropy
generation using a variety of models. Thermodynamics
helps us understand how the brain works because it is a
complicated system that undergoes energy and energy
exchange. The creation of brain entropy can be very
bene�cial in both neurological and psychiatric studies
of the brain and its diseases. Many scholars have
attempted to invite solutions for uid ow problems
in the name of entropy minimization [25]. The total
entropy generation may be a�ected by introducing
nanoparticles to the working uid. By employing
nanouids in the system, the temperature of the system
can be reduced, and ultimately, the heat passing on
involvement to the total entropy optimizing rate may
be reduced. At the same time, the nano fragments
increase the viscosity of the working uid; thereby,
the pressure drop in the operation increases. In the
previous literature, many researchers calculated the
entropy investigation, in turn, to obtain an optimal
scenario for various thermal systems [26{29].

Over the last few decades, the signi�cance of
porous media has been recognized in a variety of
industries. The porous medium enhances the contact
area between liquid and solid surfaces and improves
nanoparticle distribution, resulting in higher e�ective
heat conductivity. Jakeer et al. [30] studied the inu-
ence of the permeable sheet with the Cattaneo-Christov
heat ux model. As a consequence, typical thermal
system e�ciency is improved [31]. For ows with low
porosity and low velocity, the well-known Darcy's law
is enough. Darcy's law holds for low-ow rates across
porous space (Re less than 1). For example, Darcy's
law is useful for describing typical ows in porous
areas; however, it is insu�cient for ow rates. As
a result, Forchheimer added a non-linear relationship
between �ltration velocity and pressure gradient to
Darcy's equation. Darcy-Forchheimer relations were
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used to study the disk ow of di�erent uids in a porous
region [32]. The Forchheimer relation explains higher
ow rates. Muskat and Wycko� [33] also proclaimed
it a \Forchheimer word" valid for a large Reynolds
number. The attempts [34{37] show recent progress
in this direction. Jakeer and Reddy [38] examined the
Darcy-Forchheimer over a sheet.

To the best of the author's knowledge, there is
no study on EMHD ow and heat transfer of hybrid
nanouid across a rotating disk with the e�ects of
linear thermal radiation, porous, slip conditions, and
viscous dissipation that has been done and taken into
account. The governing Ordinary Di�erential Equa-
tions (ODEs) are transformed into partial di�erential
equations through a similarity transformation and then
solved using the Runge-Kutta (R-K) 4th order with
the shooting technique. For comparison purposes,
we used the Homotopy Perturbation Method (HPM)
method. Al2O3-Cu/H2O is considered. Copper (Cu)
nanoparticles have smaller speci�c heat and a greater
thermal conductivity, while Al2O3 solid particles have a
larger speci�c heat and less thermal conductivity. The
current study results are in excellent accord with the
relevant literature. Many modern industries use them
as heat exchangers and lubricants. The fundamental
graphs and tables are represented in this current
work.

2. Mathematical formulation

We consider a steady Darcy-Forchheimer ow of hybrid
nanouid over a stretching/shrinking rotating disk with
viscous dissipation, porous medium, heat generation,
and thermal radiation. In this study, (H2O) is con-
sidered as base uid, and (Al2O3-Cu) is taken as a
hybrid nanoparticle. Darcy-Forchheimer and porous
medium are explained in the momentum equations,
represented in Eqs. (2) and (3). Heat generation,
EMHD, and thermal radiation are explained as energy
equations. The mathematical form of the energy
equation is represented in Eq. (5). At z = 0, the
disk rotates at a constant angular velocity 
. The
velocity components (u; v; w) are in increasing (r; �; z)
directions, respectively, as shown in Figure 1.

The governing boundary layer equations are [39]:
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Figure 1. Geometrical con�guration and coordinate
system of the model.
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�khnf
�
@T
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�
= hf (Tf � T ) at z = 0; u! 0;

v ! 0; T ! T1; as z !1: (6)

Mathematical models of the thermophysical properties
of hybrid nanouid are as follows:
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Eq. (8) is shown in Box I. Suitable self-similarity
variables are expressed as follows:
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Now substituting Eq. (9) into the Eqs. (2) to (6) gives:
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Boundary conditions (6) are transformed as below:
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where  is the stretching/shrinking rotating disk. Here,
 > 0 indicates stretching rotating disk, while  < 0
indicates shrinking rotating disk. and:
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The skin friction coe�cient and Nusselt number in the
dimensional form are:
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Box I
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The non-dimensional skin friction coe�cient and Nus-
selt number are expressed as follows:
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where Rer is the local Reynolds number Rer = r(r
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2.1. Entropy generation
The entropy generation of the hybrid nanouid in the
existence of thermal radiation, Joule heating, porosity,
and viscous dissipation is given by Ramasekhar and
Reddy [40]:

S000gen =
kf
T 21

�
khnf
kf

+
16��T 31
3k�kf

��
@T
@z

�2

+
�hnf
Tw

�
2

"�
@u
@r

�2

+
1
r2u

2 +
�
@w
@z

�#
+
�
@v
@z

�2

+
�
@u
@z

�2

+
�
r
@
@r

�v
r

��2�
+
�hnf
K�Tw

�
u2+v2�+

�hnf
Tw

�
uB2 � EB�2: (21)

The entropy generation number NG becomes:

NG =
S000gen

2 (kf�T
=Tw�f )
= �

�
A5 +

4
3
Rd
�

(�0)2

+
Br

(1� �1)2:5(1� �2)2:5

�
6
Re
fF 0(�)g2

+D2
�fF 00(�)g2 + fG0(�)g2��

+
BrK

2(1� �1)2:5(1� �2)2:5

�
F 0

2

+G2
�

+
1
2
MBr(F 0 � E)2: (22)

The Bejan number obtained by Eq. (23) as shown in
Box II.

3. Method of solution

3.1. Numerical scheme
The non-dimensional system of Eqs. (10){(12), as well
as the boundary conditions (13), were numerically
solved by using the R-K 4th order along with the
shooting technique. First, we converted the basic
di�erential equations into a collection of �rst-order
ODEs for this scheme.
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3.2. Analysis of HPM
A HPM can be developed as follows. By consider the
following equations:

_(��)� `(z) = 0; z 2  : (29)
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Boundary conditions are:
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A4

�000 + E2
1

+MEcPrF 00
2 + PrF0�00 + 6Pr

�
Ec
Re

�
A1

A4
F 00

2

+
A1

A4
PrEc�000

2 +
A1

A4
PrEcG00

2 = 0; (49)

NG1 = ��020 A5 +
4
3
��020 Rd+

6BrF 020
A1Re

+
BrDG002

A1
+
Br2KF 002

2A1
2 +

BrG2
0

A1

+
MBr

2
F 00� 1

2
MBr

�
F 00

2+G2
0+E1

�
=0; (50)

where �rst-order conditions are:
F1(0) = Y; F 01(0) =  + � �F 001 (0); F 01(1) = 0;

G1(0) = 1 + � �G01(0); G1(1) = 0;

(A5) (�01(0)) = �Bi (1� �1(0)) ; �1(1) = 0: (51)

Second order:

F2 =
2A1 F 0002
A2

� 2 Fr F 00 F 01 � A3

A2
M F 01 + 2F0F 01

+2F1F 000 � 2F 00F 01 + 2G0G1 +
2A1F 000
A2�

�A1KF 01
A2

= 0; (52)

G2 = 2F1G00 � 2F 00G1 � 2F 01G0 �KG1 + 2F0G01

+2
A1

A2
G002 � 2FrG0G1 � A3

A2
MG01 = 0; (53)

�2 =
1
A4

�002 � 2E1F 01 + PrF1�00 + PrF1�01

+
4

3A4
Rd�001 + 2

A1

A4
PrEcF 000 F 001

+2
A1

A4
PrEcG00G01 + 2MPrEcF 00F 01

+12Pr
A1

A4

�
Ec
Re

�
F 00F 01 +

1
2A4

PrQ�1

+
1
A4

�01 = 0; (54)

NG2 =
1
2
M Br F 01 +

Br D F 2
1

A1
+ 2� Rd �00 �01

+
2 Br G0G1

A1
+

2Br D G00 G01
A1

+
Br2 K F 00 F 01

A2
1

+
2 Br D F 2

0 F 2
2

A1

+
12 Br F 00F 01

A1Re
= 0; (55)

where second-order conditions are:
F2(0) = Y; F 02(0) =  + � �F 002 (0); F 02(1) = 0;

G2(0) = 1 + � �G02(0); G2(1) = 0;

(A5) (�02(0)) = �Bi (1� �2(0)) ; �2(1) = 0: (56)

HPM solutions for F;G and � at K = 0:5; F r =
0:1; M = 1:2; Rd = 0:1; Ec = 0:7; Re = 0:7; Q = 0:7;
P r = 6:20; Y = 0:5; E1 = 0:5; � = 0:6; � = 0:5; 
 =
0:9; Bi = 0:9; � = 0:2;  = 0:5, are given as follows
by determining a series of functions:

F (�)=2:989422054� + 0:0002652519043�9

�0:00002824078984�10�0:000002515655145�11

+1:141626929�3 � 2:851429966�2

+0:03694421413�6 � 0:008326747357�7

+0:0004496379456�8 � 0:07724355910�5

�0:1235693645�4 + 2:000000000;

G(�)=�5:526444844� + 3:304632524

+0:4501105604�4�1:244910195�3

+3:094669423�2 + 0:007353959050�7

�0:008556567437�6 � 0:07553413596�5

+0:00002328756731�10+0:00002738172826�9

�0:001371392391�8;

�(�)=�14:10995285� + 14:110119089

�28:11693674�4 + 54:14756600�3

�29:48451471�2 � 1:793625374�7
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+7:668438948�6 � 2:197322558�5

�0:02934726421�10 + 0:2414678217�9

�0:4359641613�8:

4. Results and discussion

The current research demonstrates the behavior of
a steady Darcy-Forchheimer ow of (Al2O3-Cu/H2O)
through a stretching/shrinking rotating disk under
multiple conditions, velocity slip, thermal radiation,
and a convective boundary condition. The R-K tech-
nique was used to get the solution to the modi�ed
nonlinear coupled equations. Table 1 shows the clear-
cut outputs of the base uid and nanoparticles. Table 2
indicates a good agreement between the numerical
results compared with the HPM in Maple. Figure 2
compares the HPM and the numerical method (R-K
method) for velocity. It reveals the high accuracy of the
HPM compared to the Numerical Method (NM). The
homotopy perturbation approach and the numerical
method (R-K method) for temperature are compared
in Figure 3. The HPM is more accurate than the
numerical approach. With K = 0:12; F r = 0:18;M =
0:5; Rd = 2:0; � = 0:2;  = 0:1:� = 0:3;� = 0:1; Br =
5; D = 0:5; Ec = 0:1; Re = 0:1; Q = 0:15; P r =
6:20; Y = 0:1; E1 = 0:7; Bi = 1 Figure 4 shows the
impact of magnetic parameters on the velocity pro�le.
In the case of stretching and shrinking, the velocity
decreases as the magnetic parameter rises. This is
because an increase in M indicates an increase in

Table 2. Comparison results of E1 with NM and HPM

for
p

2A1

q
[F 00 (0)]2 + [G0 (0)]2.

E1
p

2A1

q
[F 00 (0)]2 + [G0 (0)]2

NM HPM

0.1 2.504658 2.509692

0.2 2.500882 2.506297

0.3 2.497269 2.503024

0.4 2.493818 2.499873

0.5 2.490532 2.496844

Lorentz force, which reduces the magnitude of the
velocity. In both stretching and shrinking scenarios,
higher values of the inertia coe�cient Fr increase the
velocity �eld, as shown in Figure 5. The e�ect of the
electric �eld parameter E1 on the velocity pro�le is
seen in Figure 6. For increasing values of the electric
�eld parameter, it is seen that the uid velocity and
its corresponding boundary layer thickness increase.
Figure 7 shows the e�ect of magnetic parameter M

on the velocity pro�le. In the case of stretching
and shrinking, the velocity decreases as the magnetic
parameter increases. This is because an increase in M
indicates an increase in Lorentz force, which reduces
the magnitude of the velocity. In both stretching
and shrinking scenarios, with higher values of the
inertia coe�cient Fr, the velocity pro�le decreases,
as shown in Figure 8. The inuence of the electric
�eld parameter E1 on the velocity pro�le is seen in

Table 1. Thermophysical properties of water (H2O), copper (Cu), and aluminum oxide (Al2O3) [41].

Parameters � (kg/m3) Cp (J/kgK) k (W/mK) �(
m)�1

Water (H2O) 997.1 4180 0.613 0.05

Copper (Cu) 8933 385 401 59:6� 106

Aluminium oxide (Al2O3) 3970 765 40 35 � 106

Figure 2. Comparison between HPM and NM for velocity pro�les.
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Figure 3. Comparison between HPM and NM for temperature and entropy generation pro�les.

Figure 4. Variation due to M on f 0(�).

Figure 5. Variation due to Fr on f 0(�).

Figure 9. The velocity pro�le enhances the higher
values of the electric �eld. The larger values of
the magnetic parameter M enhance the temperature
pro�le, as shown in Figure 10. This is because a
transversal magnetic �eld applied to an electrically

Figure 6. Variation due to E1 on f 0(�).

Figure 7. Variation due to M on g(�).

conducting uid causes the Lorentz force, which is a
resistive form of force. This force has the e�ect of
slowing the velocity of the uid, thereby raising the
temperature of the uid. The e�ect of the electric �eld
parameter on the temperature pro�le is seen in Figure
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Figure 8. Variation due to Fr on g(�).

Figure 9. Variation due to E1 on g(�).

Figure 10. Variation due to M on �(�).

11. For growing values of the electric �eld parameter,
it is seen that the uid temperature and corresponding
thermal layer thickness increase. Figure 12 shows
the inuence of the heat generation parameter Q on

Figure 11. Variation due to E1 on �(�).

Figure 12. Variation due to Q on �(�).

�. Increasing the heat generation parameter increases
the temperature pro�le in both cases of stretching
and shrinking. Physically, the intrinsic energy of
liquid particles grows by higher values of Q, and
hence, temperature increases. Physically, increasing
the radiation parameter Rd encourages more heat to
enter into the liquid, which increases the thickness of
the thermal boundary layer. As a result, in the high-
emphasis ow area, radiation plays an important role in
increasing the heat transfer rate from the disk surface,
as seen in Figure 13. Figure 14 shows the impact of
the wall slip parameter over the entropy generation
pro�le when increasing the values of �. As a result,
the entropy generation rate pro�le decreases. The
e�ect of the Brinkman number on the entropy pro�le
is seen in Figure 15. When increasing the values of the
Brinkman number, the total entropy pro�le increases.
Physically, the Brinkman number that rotates Br is the
ratio of direct heat conduction from the disk surface
to viscous heat produced by boundary layer shear.
As Br increases, more heat is absorbed by the uid,
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Figure 13. Variation due to Rd on �(�).

Figure 14. Variation due to � on NG.

Figure 15. Variation due to Br on NG.

signi�cantly enhancing the gradient and growing the
entropy generation pro�le. The variation in the entropy
generation pro�le for di�erent values of the ratio
parameter is shown in Figure 16. It is observed that the

Figure 16. Variation due to � on NG.

Figure 17. Variation due to � on Be.

entropy generation pro�le increases with an increase in
the ratio parameter. Figure 17 displays the inuence
that � produces on the Bejan number pro�le when the
higher values of � are increased. Because of this, the
Bejan number pro�le has decreased. In Figure 18, it
is analyzed that the Bejan number pro�le improves for
intensifying values of the Brinkman number.

Several factors on the skin friction coe�cient were
explored in Figure 19. Figure 19 shows the e�ect of
the electric �eld and magnetic �eld on the skin friction
coe�cient. It shows that the skin friction coe�cient
grows in both cases of the greater values of electric
�eld and magnetic �eld. Figure 20 displays the e�ect of
the magnetic and electric �elds on the Nusselt number.
It demonstrates that the Nusselt number pro�le is
increasing in both cases of the greater magnetic and
electric �eld values.

5. Conclusions

In the present investigation, we have explored
the entropy generation on electromagnetohydrody-
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Figure 18. Variation due to Br on Be.

Figure 19. Impact of E1 and M on Cf (Rer)1=2.

Figure 20. Impact of M and E1 on Nur(Rer)�1=2.

namic (EMHD) copper-aluminum oxide/water hybrid
nanouid ow over a rotating disk. Self-similarity
variables are used to transform non-dimensional partial
di�erential equations. The e�ects of active parameters

on velocities, temperature, entropy production, Bejan
number, skin friction coe�cient, and Nusselt number
are graphically shown. This model may be useful for
many modern industries that use them as heat ex-
changers and lubricants. The most important �ndings
of this recent study are stated below:

� The velocity pro�le is enhanced by boosting the
inertia coe�cient parameter values;

� Electric �eld parameter leads to temperature pro�le
enhancement;

� Temperature of uid ow increased with the higher
values of the thermal radiation (Rd) parameter;

� For the higher values of the Brinkman number and
temperature ratio parameter, the entropy genera-
tion pro�le increases over a rotating disk;

� The Bejan number pro�le is enhanced in the case of
higher values of the Brinkman number;

� The skin-friction coe�cient and Nusselt number
increase with the magnetic �eld parameter M in-
crease;

� From an industrial point of view, the water/copper-
alumina exhibits outstanding ow and thermal fea-
tures.

Nomenclature

Parameter

(u; v; w) Velocity components
(r; �; z) Directions (m/s)
k Thermal conductivity (W/m�1/K�1)
�1; �2 Nanoparticles volume fraction
cp Heat capacity (J/kg�1/K�1)
Tw Surface temperature (K)
Tf Temperature of heated uid (K)
T Temperature of the uid (K)
L Wall slip coe�cient
P Pressure (Pa)
hf Heat transfer coe�cient (W/m2/K)
T1 Ambient uid temperature (K)
E Strength of electric �eld (N/C)
� Solid volume fraction
k� Mean absorption coe�cient
K Porosity parameter
Br Rotational Brinkman number
Ec Eckert number
 Stretching ratio parameter
Q Heat absorption/generation coe�cient
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� Wall slip parameter
Re Rotational Reynolds number
Fr Inertia coe�cient
F � Non-uniform inertia coe�cient
Cd Drag coe�cient
�T Temperature di�erence
D Dimensionless radial coordinate
Bi Biot number
E1 Electric �eld parameter
M Magnetic interaction parameter
NG Dimensionless entropy generation rate
Rd Radiation parameter

 Curvature parameter

Greek letters

� Temperature ratio parameter
� Dynamic viscosity (kg/m�1/s�1)
� Kinematic viscosity (m2/s�1)
� Electric conductivity (s/m�1)
� Thermal expansion (K�1)
� Density (kg/m�3)
�f Thermal di�usivity of the base uid

(m2/s)
�� Stefan Boltzmann constant
�r Radial wall stress (Pa)
�' Circumferential shear stress (Pa)

Subscripts

f Base uid
nf Nanouid
hnf Hybrid nanouid
s1 First solid nanoparticle
s2 Second solid nanoparticle

Superscript
0 Di�erentiation with respect to �
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