References:
1. Ma, M. and Hill, R.M. "Superhydrophobic surfaces", Curr. Opin. Colloid Interface Sci., 11, pp. 193-202 (2006). https://doi.org/10.1016/j.cocis.2006.06.002.
2. Zhang, X., Shi, F., Niu, J., et al. "Superhydrophobic surfaces: from structural control to functional application", J. Mater. Chem., 18, pp. 621-633 (2008). DOI https://doi.org/10.1039/B711226B.
3. Guo, Z., Liu, W., and Su, B.L. "Superhydrophobic surfaces: from natural to biomimetic to functional", J. Colloid Interface Sci., 353, pp. 335-355 (2011). https://doi.org/10.1016/j.jcis.2010.08.047.
4. Darband, G.B., Aliofkhazraei, M., Khorsand, S., et al. "A science and engineering of superhydrophobic surfaces: review of corrosion resistance chemical and mechanical stability", Arabian J. Chem., 13, pp. 1763- 1802 (2020). https://doi.org/10.1016/j.arabjc.2018.01.013.
5. Khan, M.Z., Militky, J., Petru, M., et al. "Recent advances in superhydrophobic surfaces for practical applications: A review", Europ. Polym. J., 8, 111481 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111481.
6. Li, W., Zhan, Y., Amirfazli, A., et al. "Recent progress in stimulus-responsive superhydrophobic surfaces", Prog. Org. Coat., 168, p. 106877 (2022). https://doi.org/10.1016/j.porgcoat.2022.106877.
7. Sam, E.K., Sam, D.K., Lv, X., et al. "Recent development in the fabrication of self-healing superhydrophobic surfaces", Chem. Eng. J., 373, pp. 531-546 (2019). https://doi.org/10.1016/j.cej.2019.05.077.
8. Sharma, D.K., Baghel, V., Kumar, R., et al. "Recent developments in fabrication of super-hydrophobic surfaces: A review", Adv. Ind. Prod. Eng., pp. 127-140 (2019). https://doi.org/10.1007/978-981-13-6412-9 12.
9. Wang, X., Ding, B., Yu, J., et al. "Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials", Nano Today, 6, pp. 510-530 (2011). https://doi.org/10.1016/j.nantod.2011.08.004.
10. Manca, M., Cannavale, A., De Marco, L., et al. "Durable superhydrophobic and antire ective surfaces by trimethylsilanized silica nanoparticles based sol- gel processing", Langmuir, 25, pp. 6357-6362 (2009). https://doi.org/10.1021/la804166t.
11. Ge-Zhang, S., Yang H., Ni, H., et al. "Biomimetic superhydrophobic metal/nonmetal surface manufactured by etching methods: A mini review", Front. Bioeng. Biotech., 10, p. 958095 (2022). https://doi.org/10.3389/fbioe.2022.958095.
12. Haghdoost, A. and Pitchumani, R. "Fabricating superhydrophobic surfaces via a two-step electrodeposition technique", Langmuir, 30, pp. 4183-4191 (2013). https://doi.org/10.1021/la403509d.
13. Xiang, T., Ding, S., Li, C., et al. "Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel", Mater. Des., 114, pp. 65-72 (2017). https://doi.org/10.1016/j.matdes.2016.10.047.
14. Olugbade, T.O., Abioye, T.E., Farayibi, P.K., et al. "Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated by magnetron sputtering deposition coated on a stainless steel substrate", Anal. Lett., 54(10), pp. 1588-1602 (2021). https://doi.org/10.1080/00032719.2020.1815757.
15. Olugbade, T. and Lu, J. "Characterization of the corrosion of nanostructured 17-4 PH stainless steel by Surface Mechanical Attrition Treatment (SMAT)", Anal. Lett., 52(16), pp. 2454-2471 (2019). https://doi.org/10.1080/00032719.2019.1611842.
16. Olugbade, T., Liu, C., and Lu, J. "Enhanced passivation layer by Cr diffusion of 301 stainless steel facilitated by SMAT", Adv. Eng. Mater., 21, 1900125 (2019). https://doi.org/10.1002/adem.201900125.
17. Olugbade, T. and Lu, J. "Enhanced corrosion properties of nanostructured 316 stainless steel in 0.6 M NaCl solution", J. Bio. Tribo. Corros., 5, p. 38 (2019). https://doi.org/10.1007/s40735-019-0235-7.
18. Olugbade, T. "Electrochemical characterization of the corrosion of mild steel in saline following mechanical deformation", Anal. Lett., 54, pp. 1055-1067 (2021). https://doi.org/10.1080/00032719.2020.1793994.
19. Chen, Z., Tian, F., Hu, A., et al. "A facile process for preparing superhydrophobic nickel films with stearic acid", Surf. Coat. Technol., 231, pp. 88-92 (2013). https://doi.org/10.1016/j.surfcoat.2012.01.053.
20. Hashemzadeh, M., Raeissi, K., Ashrafizadeh, F., et al. "Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings", Surf. Coat. Technol., 283, pp. 318-328 (2015). https://doi.org/10.1016/j.surfcoat.2015.11.008.
21. Rahimi, E., Rafsanjani-Abbasi, A., Kiani-Rashid, A., et al. "Morphology modification of electrodeposited superhydrophobic nickel coating for enhanced corrosion performance studied by AFM, SEM-EDS and electrochemical measurements", Colloids Surf. A., 547, pp. 81-94 (2018). https://doi.org/10.1016/j.colsurfa.2018.03.045.
22. Su, F., Yao, K., Liu, C., et al. "Rapid fabrication of corrosion resistant and superhydrophobic cobalt coating by a one-step electrodeposition", J. Electrochem. Soc., 160, pp. D593-D599 (2013). DOI: 10.1149/2.047311jes.
23. She, Z., Li, Q., Wang, Z., et al. "Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy", ACS Appl. Mater. Interfaces, 4, pp. 4348-4356 (2012). https://doi.org/10.1021/am3009949.
24. Niu, S., Fang, Y., Qiu, R., et al. "Superhydrophobic film based on Cu-dodecanethiol complex: preparation and corrosion inhibition for Cu", Colloids Surf. A., 550, pp. 65-73 (2018). https://doi.org/10.1016/j.colsurfa.2018.04.023.
25. Khorsand, S., Raeissi, K., Ashrafizadeh, F., et al. "Corrosion behaviour of super-hydrophobic electrodeposited nickel-cobalt alloy film", Appl. Surf. Sci., 364, pp. 349-357 (2016). https://doi.org/10.1016/j.apsusc.2015.12.122.
26. Su, F. and Yao, K. "Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method", ACS Appl. Mater. Interfaces, 6, pp. 8762- 8770 (2014). https://doi.org/10.1021/am501539b.
27. Yu, Q., Zeng, Z., Zhao, W., et al. "Patterned Ni-P alloy films prepared by "Reducing-discharging" process and the hydrophobic rpoperty", ACS Appl. Mater. Interfaces, 6, pp. 1053-1060 (2014). https://doi.org/10.1021/am404590d.
28. Hang, T., Hu, A., Ling, H., et al. "Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition", Appl. Surf. Sci., 256, pp. 2400-2404 (2010). https://doi.org/10.1016/j.apsusc.2009.10.074.
29. Barati Darband, G., Aliofkhazraei, M., and Sabour Rouhaghdam, A. "Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction", Int. J. Hydrogen Energy, 42, pp. 14560- 14565 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.120.
30. Ran, M., Zheng, W., and Wang, H. "Fabrication of superhydrophobic surfaces for corrosion protection: a review", Mater. Sci. Technol., 35, pp. 313-326 (2019). https://doi.org/10.1080/02670836.2018.1560985.
31. Wang, Y., Wang, W., Zhong, L., et al. "Superhydrophobic surface on pure magnesium substrate by wet chemical method", Appl. Surf. Sci., 256, pp. 3837- 3840 (2010). https://doi.org/10.1016/j.apsusc.2010.01.037.
32. Zhang, J., Li, J., and Han, Y. "Superhydrophobic PTFE surfaces by extension", Macromol. Rapid Commun., 25, pp. 1105-1108 (2004).https://doi.org/10.1002/marc.200400065.
33. Iacovetta, D., Tam, J., and Erb, U "Synthesis, structure, and properties of superhydrophobic nickel-PTFE nanocomposite coatings made by electrodeposition", Surf. Coat. Technol., 279, pp. 134-141 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.022.
34. Chen, Z., Li, F., Hao, L., et al. "One-step lectrodeposition process to fabricate cathodic superhydrophobic surface", Appl. Surf. Sci., 258, pp. 1395-1398 (2011). https://doi.org/10.1016/j.apsusc.2011.09.086.
35. Piwowarczyk, J., Jedrzejewski, R., Moszynski, D., et al. "XPS and FT IR studies of polytetra uoroethylene thin films obtained by physical methods", Polymers, 11, pp. 1629-1641 (2019). https://doi.org/10.3390/polym11101629.
36. Wang, H., Di, D., Zhao, Y., et al. "A multifunctional polymer composite coating assisted with pore-forming agent: Preparation, superhydrophobicity and corrosion resistance", Prog. Org. Coat., 132, pp. 370-378 (2019). https://doi.org/10.1016/j.porgcoat.2019.04.027.
37. Khorsand, S., Raeissi, K., and Ashrafizadeh, F. "Corrosion resistance and long-term durability of superhydrophobic nickel film prepared by electrodeposition process", Appl. Surf. Sci., 305, pp. 498-505 (2014). https://doi.org/10.1016/j.apsusc.2014.03.123.
38. Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy, Wiley-Interscience: Hoboken, NJ (2008).
39. Tam, J., Jiao, Z., Lau, J.C.F., et al. "Wear stability of superhydrophobic nano Ni-PTFE electrodeposits", Wear, 374, pp. 1-4 (2017). https://doi.org/10.1016/j.wear.2016.12.023.
40. Guo, Z., Zhou, F., Hao, J., et al "Stable biomimetic super-hydrophobic engineering materials", J. Am. Chem. Soc., 127, pp. 15670-15671 (2005). https://doi.org/10.1021/ja0547836.