Integrated and computationally-efficient analysis method for FRP building floor panels

Document Type : Article

Authors

1 Center of Excellence in Structures and Earthquake Engineering, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

2 Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Due to the many advantages of FRP decks, such as lightweight and high strength, recently, using FRP decks as building deck panels is considered an alternative choice to traditional decks. Accordingly, there is an increasing need for an analysis tool for engineering and academic applications. Finite element is an accurate and reliable method for analyzing FRP decks. However, high computational cost and modeling difficulty somewhat limit its application. To overcome this shortcoming, this study presents an integrated, easy-to-use, computationally-efficient, and yet rather accurate analysis method for FRP decks. This integrated method was implemented in a computer code and can be easily used to analyze building FRP deck panels. To evaluate the deck's applicability as a building floor panel system, some requirements are needed to be met, including maximum allowable elastic deflection, local stability of components, vibration frequency, and ductility of the flooring system. The proposed method uses the Rayleigh-Ritz method to calculate these requirements. Using three different FRP deck examples, it was shown that the proposed method is generic and capable of analyzing various forms of the FRP deck panels, including all-FRP and hybrid decks made of two or more different materials.

Keywords

Main Subjects


References:
1. Van Den Einde, L., Zhao, L., and Seible, F. "Use of FRP composites in civil structural applications", Constr. Build. Mater., 17(6), pp. 389-403 (2003). DOI: 10.1016/S0950-0618(03)00040-0.
2. Saleem, M.A., Zafar, M.N., Saleem, M.M., and Xia, J. "Recent developments in the prefabricated bridge deck systems", Case Stud. Constr. Mater., 15, p. e00750 (2021). DOI: 10.1016/j.cscm.2021.e00750.
3. Yang, Z. and Sebastian, W. "Nonlinear behaviour of pultruded decks due to morphing of tyre loads", Eng. Struct., 274, p. 115146 (2023). DOI: 10.1016/j.engstruct.2022.115146.
4. Gopinath, R., Poopathi, R., and Saravanakumar, S.S. "Characterization and structural performance of hybrid fiber-reinforced composite deck panels", Adv. Compos. Hybrid Mater., 2(1), pp. 115-124 (2019). DOI: 10.1007/s42114-019-00076-w.
5. Xin, H., Mosallam, A., Correia, J.A.F.O., et al. "Material-structure integrated design optimization of GFRP bridge deck on steel girder", Structures, 27, pp. 1222-1230 (2020). DOI: 10.1016/j.istruc.2020.07.008.
6. Sa, M.F., Correia, J.R., Silvestre, N., et al. "Transverse bending and in-plane shear behaviours of multicellular pultruded GFRP deck panels with snap-fit connections", Thin-Walled Struct., 154, p. 106854 (2020). DOI: 10.1016/j.tws.2020.106854.
7. Wang, J., Cheng, B., Yan, X., et al. "Structural analysis and optimization of an advanced all-GFRP highway bridge", Structures, 34, pp. 3155-3171 (2021). DOI: 10.1016/j.istruc.2021.09.064.
8. Sun, Y., Liu, Y., Wang, C., et al. "Web buckling mechanism of pultruded GFRP bridge deck profiles subjected to concentrated load", Structures, 34, pp. 3789-3805 (2021). DOI: 10.1016/j.istruc.2021.10.002.
9. Park, S.-Z., Jeong, S.-H., Lee, H., et al. "Analysis of adhesive joints in a GFRP bridge deck under bidirectional bending due to traffic wheel loads", Appl. Sci., 12(5), p. 2748 (2022). DOI: 10.3390/app12052748.
10. Gao, Y., Chen, J., Zhang, Z., et al. "An advanced FRP  floor panel system in buildings", Compos. Struct., 96, pp. 683-690 (2013). DOI: 10.1016/j.compstruct.2012.09.033.
11. Awad, Z.K., Aravinthan, T., and Zhuge, Y. "Experimental and numerical analysis of an innovative GFRP sandwich  oor panel under point load", Eng. Struct., 41, pp. 126-135 (2012). DOI: 10.1016/j.engstruct.2012.03.023.
12. Satasivam, S., Bai, Y., and Zhao, X.-L. "Adhesively bonded modular GFRP web-flange sandwich for building floor construction", Compos. Struct., 111, pp. 381- 392 (2014). DOI: 10.1016/j.compstruct.2014.01.003.
13. Satasivam, S. and Bai, Y. "Mechanical performance of modular FRP-steel composite beams for building construction", Mater. Struct., 49(10), pp. 4113-4129 (2016). DOI: 10.1617/s11527-015-0776-2.
14. Hollaway, L.C. "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24(12), pp. 2419- 2445 (2010). DOI: 10.1016/j.conbuildmat.2010.04.062.
15. Zou, X., Lin, H., Feng, P., et al. "A review on FRP-concrete hybrid sections for bridge applications", Compos. Struct., 262, p. 113336 (2021). DOI: 10.1016/j.compstruct.2020.113336.
16. Ji, H.S., Son, B.J., and Ma, Z. "Evaluation of composite sandwich bridge decks with hybrid FRP-steel core", J. Bridg. Eng., 14(1), pp. 36-44 (2009). DOI: 10.1061/(ASCE)1084-0702(2009)14:1(36).
17. Lombardi, N.J. and Liu, J. "Glass fiber-reinforced polymer/steel hybrid honeycomb sandwich concept for bridge deck applications", Compos. Struct., 93(4), pp. 1275-1283 (2011). DOI: 10.1016/j.compstruct.2010.10.007.
18. Alizadeh, E. and Dehestani, M. "Detailed numerical modeling and parametric analysis of a composite deck", J. Sandw. Struct. Mater., 20(6), pp. 2077-2098 (2018). DOI: 10.1177/1099636218762686.
19. Alizadeh, E., Dehestani, M., Navayi Neya, B., et al. "Efficient composite bridge deck consisting of GFRP, steel, and concrete", J. Sandw. Struct. Mater, 21(1), pp. 154-174 (2017). DOI: 10.1177/1099636216688347.
20. Kim, H.-Y. and Lee, S.-Y. "Static and fatigue load performance of a pultruded GFRP deck panel reinforced with steel wires", Compos. Struct., 207, pp. 166-175 (2019). DOI: 10.1016/j.compstruct.2018.09.022.
21. Zou, X., Feng, P., Bao, Y., et al. "Experimental and analytical studies on shear behaviors of FRP-concrete composite sections", Eng. Struct., 215, p. 110649 (2020). DOI: 10.1016/j.engstruct.2020.110649.
22. Pournasiri, E., Pham, T.M., and Hao, H. "Behavior of Ultrahigh-Performance Concrete Bridge Decks with New Y-Shape FRP Stay-in-Place Formworks", J. Compos. Constr., 26(3), p. 4022023 (2022). DOI: 10.1061/(ASCE)CC.1943-5614.0001214.
23. Fascetti, A., Feo, L., and Abbaszadeh, H. "A critical review of numerical methods for the simulation of pultruded fiber-reinforced structural elements", Compos. Struct., 273, p. 114284 (2021). DOI: 10.1016/j.compstruct.2021.114284.
24. Barbero, E.J., Satasivam, S., Bai, Y., et al. "A systematic analysis and design approach for single-span FRP deck / stringer bridges", Compos. Struct., 31(4), pp. 736-746 (2016). DOI: 10.1016/S1359-8368(99)00044- X.
25. Kim, Y. and Lee, J. "An analytical model for the flexural response of a fiber reinforced plastic deck using higher-order shear deformable plate theory", Compos. Struct., 85(4), pp. 275-283 (2008). DOI: 10.1016/j.compstruct.2007.10.035.
26. Aref, A.J., Alampalli, S., and He, Y. "Ritzbased static analysis method for fiber reinforced plastic rib core skew bridge superstructure", -J. Eng. Mech., 127(5), pp. 450-458 (2001). DOI: 10.1061/(ASCE)0733-9399(2001)127:5(450).
27. Xin, H., Mosallam, A., Liu, Y., et al. "Analytical and experimental evaluation of  flexural behavior of FRP pultruded composite profiles for bridge deck structural design", Constr. Build. Mater., 150, pp. 123-149 (2017). DOI: 10.1016/j.conbuildmat.2017.05.212.
28. Satasivam, S., Bai, Y., Yang, Y., et al. "Mechanical performance of two-way modular FRP sandwich slabs", Compos. Struct., 184, pp. 904-916 (2018). DOI: 10.1016/j.compstruct.2017.10.026.
29. Zhou, A. "Sti ness and strength of fiber reinforced polymer composite bridge deck systems", PhD Thesis, Virginia Polytechnic Institute and State University, VA, US (2002).
30. Herakovich, C.T., Mechanics of Fibrous Composites, Wiley (1997). 
31. Liew, K.M. "Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and thep- Ritz method", J. Sound Vib., 198(3), pp. 343-360 (1996). DOI: 10.1006/jsvi.1996.0574.
32. Kumar, A., Panda, S.K., and Kumar, R. "Buckling behaviour of laminated composite skew plates with various boundary conditions subjected to linearly varying in-plane edge loading", Int. J. Mech. Sci., 100, pp. 136-144 (2015). DOI: 10.1016/j.ijmecsci.2015.06.018.
33. Turvey, G.J. and Marshall, I.H., Buckling and Postbuckling of Composite Plates, Springer Science and Business Media (2012). 
34. Garrido, M., Correia, J.R., Keller, T., et al. "Adhesively bonded connections between composite sandwich  floor panels for building rehabilitation", Compos. Struct., 134, pp. 255-268 (2015). DOI: 10.1016/j.compstruct.2015.08.080.
35. Lingho , D., Haghani, R., and Al-Emrani, M. "Carbon-fibre composites for strengthening steel structures", Thin-walled Struct., 47(10), pp. 1048-1058 (2009). DOI: 10.1016/j.tws.2008.10.019.
36. Murray, T.M., Allen, D.E., and Ungar, E.E., Design guide 11: vibrations of steel-framed structural systems due to human activity, 2nd Edn, pp. 7-14, American Institute of Steel Construction, US (2016).
37. Kaw, A.K., Mechanics of Composite Materials, 2nd Edn, pp. 369-431, CRC press, London, UK (2005).
38. Tsai, S.W. andWu, E.M. "A general theory of strength for anisotropic materials", J. Compos. Mater., 5(1), pp. 58-80 (1971). DOI: 10.1177/002199837100500106.
39. Moghaddam, H., Sadrara, A., and Jalali, S.R. "Seismic performance of stainless-steel built-up box columns subjected to constant axial loads and cyclic lateral deformations", Structures, 33, pp. 4080-4095 (2021). DOI: 10.1016/j.istruc.2021.07.014.
40. Moghaddam, H. and Sadrara, A. "Experimental and numerical evaluation of the mechanical characteristics of semi-rigid saddle connections", Struct. Des. Tall Spec. Build., 31(7), p. e1923 (2022). DOI: 10.1002/tal.1923.
41. Moghaddam, H. and Sadrara, A. "Improving the mechanical characteristics of semi-rigid saddle connections", J. Constr. Steel Res., 186, p. 106917 (2021). DOI: 10.1016/j.jcsr.2021.106917.
42. Patil, A.Y., Banapurmath, N.R., Sumukh, E.P., et al. "Multi-scale study on mechanical property and strength of new green sand (poly lactic acid) as replacement of fine aggregate in concrete mix", Symmetry 2020., 12(11), p. 1823 (2020). DOI: 10.3390/sym12111823.
43. Patil, V.S., Banoo, F., Kurahatti, R.V., et al. "A study of sound pressure level (SPL) inside the truck cabin for new acoustic materials: An experimental and FEA approach", Alexandria Eng. J., 60(6), pp. 5949-5976 (2021). DOI: 10.1016/j.aej.2021.03.074.
44. Patil, A.Y., Hegde, C., Savanur, G., et al. "Biomimicking nature-inspired design structures2014an experimental and simulation approach using additive manufacturing", Biomimetics, 7(4), p. 186 (2022). DOI: 10.3390/biomimetics7040186.
45. Mysore, T.H.M., Patil, A.Y., Raju, G.U., et al. "Investigation of mechanical and physical properties of big sheep horn as an alternative biomaterial for structural applications", Mater., 14(14), p. 4039 (2021). DOI: 10.3390/ma14144039.
46. Nimbagal, V., Banapurmath, N.R., Sajjan, A.M., et al. "Studies on hybrid bio-nanocomposites for structural applications", J. Mater. Eng. Perform., 30(9), pp. 6461-6480 (2021). DOI: 10.1007/s11665-021-05843-9.
47. Documentation, A. and Manual, U. "Version 6.14", Dassault Syst (2010). 
48. Barbero, E.J., Finite Element Analysis of Composite Materials Using AbaqusTM, CRC press (2013). 
49. Zhu, D., Shi, H., Fang, H., et al. "Fiber reinforced composites sandwich panels with web reinforced wood core for building  oor applications", Compos. Part B Eng., 150, pp. 196-211 (2018). DOI: 10.1016/j.compositesb.2018.05.048.
50. Qiao, P. and Shan, L. "Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes", Compos. Struct., 70(4), pp. 468- 483 (2005). DOI: 10.1016/j.compstruct.2004.09.005.
51. Keller, T. and Schollmayer, M. "Plate bending behavior of a pultruded GFRP bridge deck system", Compos. Struct., 64(3-4), pp. 285-295 (2004). DOI: 10.1016/j.compstruct.2003.08.011.
52. ASTM "Standard Specification for Carbon Structural Steel, ASTM A36/A36M-19", American Society for Testing and Materials, US (2019). 
53. Wong, M.B. Plastic Analysis and Design of Steel Structures, Butterworth-Heinemann (2011). 
54. Szilard, R., Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John Wiley and Sons (2004).
Volume 31, Issue 19
Transactions on Civil Engineering (A)
November and December 2024
Pages 1793-1808
  • Receive Date: 16 November 2021
  • Revise Date: 14 January 2023
  • Accept Date: 05 April 2023